scholarly journals Evaluating the antimicrobial activity and antitumor screening of green synthesized silver nanoparticles compounds, using Syzygium jambolanum, towards MCF7 cell line (Breast cancer cell line)

Author(s):  
Dr. M. MADAKKA ◽  
Dr. N. JAYARAJU ◽  
Dr. N. RAJESH
Author(s):  
Nawfal N R Alrawi ◽  
Mohammed Q Al-ani ◽  
Nahi Y Yaseen

 Objective: Synthesized silver nanoparticles (AgNPs) in liquids were investigated as anticancer cells in the present study. Cytotoxic activities of six different concentrations 0.78, 1.56, 3.125, 6.25, 12.5, and 25 μg/ml of AgNPs against human breast cancer cell line (AMJ13) and lymphocytes were assessed with MTT assay.Methods: A Q-Switched Nd: YAG pulsed laser (λ=1064 nm, 800 mJ/pulse) was used for ablation of a pure silver plate to synthesis AgNPs in the polyvinylpyrrolidone and deionize distilled water. Ultraviolet-visible spectroscopy confirmed the synthesis of AgNPs and zeta potential was evaluated. Morphology and size were analyzed by transmission electron microscope. AgNPs concentrations were determined by atomic absorption spectroscopy. Possibilities of apoptosis induction were confirmed using mitochondrial membrane potential assay, DNA fragmentation assay, and glutathione (GSH) assay.Results: The results indicated that AgNPs were able to induce an inhibition of AMJ13 cells compared their damaging effect toward normal lymphocytes were at minimal according to viability with MTT assay.. Furthermore, these results suggested that AgNPs-induced mitochondrial-mediated apoptosis cause DNA fragmentation, but no significant change in GSH level in AMJ13 cells.Conclusions: The overall results indicated that the physically synthesized AgNPs were exhibited dose-dependent cell death in AMJ13 breast cancer cell line, while the effect of AgNPs on lymphocytes was very low, suggesting that physically synthesized AgNPs might be a potential alternative agent for human breast cancer therapy.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Marzieh Azizi ◽  
Hedayatoallah Ghourchian ◽  
Fatemeh Yazdian ◽  
Shahla Bagherifam ◽  
Sara Bekhradnia ◽  
...  

Author(s):  
LEEMA ROSE A ◽  
VIDHYA S ◽  
JANEETA PRIYA F ◽  
SABEENA ASHIFA J

Objective: The aim of the present study is to synthesize the silver (Ag) nanoparticle using Aloin with a focus on its antibacterial, antioxidant, and anticancer activity. Methods: The silver nanoparticles were synthesized using Aloin and were determined by UV-Visible spectrum. It was further characterized by scanning electron microscope (SEM), zeta potential, and dynamic light scattering (DLS). The Fourier transform infrared analysis was also carried out for the Aloin. Results: The UV-Visible absorption spectrum of the synthesized silver nanoparticles has shown the absorption peak at 439nm which proves the formation of silver nanoparticles in the solution. The SEM analysis revealed that the Ag nanoparticles were spherical in shape. The IR spectra showed that there are 6 functional groups are present in Aloin extract. The synthesized nanoparticles are found to be highly stable with an average particle size of 130.7nm which was confirmed by zeta potential and DLS analysis. The synthesized nanoparticles had a good antibacterial and antioxidant activity. It shows a very good cytotoxic effect against breast cancer cell line. Conclusion: The present study suggests that the synthesis route is free from the requirements such as high energy, extended preparation time, and special equipments and thus can be used for large-scale synthesis in food industries for food preservation and these Ag nanoparticles can be used for its therapeutic purposes for developing a new drug against cancer.


Sign in / Sign up

Export Citation Format

Share Document