The effect of preprocessing methods in reducing interfering variability from near-infrared measurements of creams

2004 ◽  
Vol 36 (3) ◽  
pp. 495-503 ◽  
Author(s):  
J. Luypaert ◽  
S. Heuerding ◽  
Y. Vander Heyden ◽  
D.L. Massart
2019 ◽  
Vol 27 (2) ◽  
pp. 147-155
Author(s):  
Reisha D Peters ◽  
Scott D Noble

Spectral differences between aqueous solutions of NaCl and KCl have received minimal attention in previous research due to strong similarities between the two salts and the lack of motivation to differentiate between them. Correlations between salinity and absorbance have been developed previously with varying degrees of linearity but have not been tested to saturation. This work will demonstrate that correlating spectral measurements and the concentration of NaCl and KCl in water can be extended up to the saturation point of both salts and that solutions of these salts with unknown concentrations can be distinguished. Spectral data for samples of NaCl and KCl in single-salt solutions were collected up to saturation and correlations were developed for differentiating between solutions of the two species. These correlations were able to correctly identify the solution type for all solutions in the test set and estimate their concentrations with an average error of 0.9%.


2021 ◽  
Vol 9 ◽  
Author(s):  
Hamootal Duadi ◽  
Idit Feder ◽  
Dror Fixler

Measuring physical phenomena in an experimental system is commonly limited by the detector. When dealing with spatially defined behaviors, the critical parameter is the detector size. In this work, we examine near-infrared (NIR) measurements of turbid media using different size detectors at different positions. We examine cylindrical and semi-infinite scattering samples and measure their intensity distribution. An apparent crossing point between samples with different scatterings was previously discovered and named the iso-pathlength point (IPL). Monte Carlo simulations show the expected changes due to an increase in detector size or similarly as the detector’s location is distanced from the turbid element. First, the simulations show that the intensity profile changes, as well as the apparent IPL. Next, we show the average optical pathlength, and as a result, the differential pathlength factor, are mostly influenced by the detector size in the range close to the source. Experimental measurements using different size detectors at different locations validate the influence of these parameters on the intensity profiles and apparent IPL point. These findings must be considered when assessing optical parameters based on multiple scattering models. In cases such as NIR assessment of tissue oxygenation, size and location may cause false results for absorption or optical path.


1998 ◽  
Vol 52 (10) ◽  
pp. 1348-1352 ◽  
Author(s):  
Chris L. Stork ◽  
David J. Veltkamp ◽  
Bruce R. Kowalski

An automated method integrating wavelet processing and techniques from multivariate statistical process control (MSPC) is presented, providing a means for the simultaneous localization, detection, and identification of disturbances in spectral data. A defining property of the wavelet transform is its ability to map a one-dimensional chemical spectrum into a two-dimensional function of wavelength and scale. Therefore, unlike the traditional MSPC approach where disturbance detection is carried out in the original wavelength domain by using a single principal component analysis (PCA) model, detection employing wavelet transform processing results in the generation of multiple models within the wavelength-scale domain. Provided that the spectral disturbance can be localized within a subregion of the wavelength-scale domain through an advantageous choice of basis set, the method described allows the identification of the underlying disturbance. The utility of the proposed method in localizing, detecting, and identifying spectral disturbances is demonstrated by using real near-infrared measurements, suggesting its general applicability in spectroscopic monitoring of chemical processes.


2018 ◽  
Vol 14 (S345) ◽  
pp. 390-392
Author(s):  
P. Ábrahám ◽  
Á. Kóspál ◽  
M. Kun ◽  
O. Fehér ◽  
G. Zsidi ◽  
...  

AbstractThe early evolution of Sun-like stars may be interspersed by energetic FU Orionis (FUor) type accretion outbursts. We analysed eight years of photometric and spectroscopic variability of V582 Aur, a bona fide FUor, in outburst. While the accretion rate derived from near-infrared measurements was constant, radical brightness changes occurred due to dust clumps crossing the line of sight. The brightness minima resemble the variability patterns of the UXor phenomenon. Orbiting density enhancements or short-lived clumps moving in and out of the line-of-sight may explain these observations. Our message is that during FUor outbursts the inner disk is a dynamically active place, affecting the initial conditions for planet formation.


1999 ◽  
Vol 19 (1) ◽  
pp. 27-38 ◽  
Author(s):  
Chris E. Cooper ◽  
Mark Cope ◽  
Roger Springett ◽  
Philip N. Amess ◽  
Juliet Penrice ◽  
...  

The use of near-infrared spectroscopy to measure noninvasively changes in the redox state of cerebral cytochrome oxidase in vivo is controversial. We therefore tested these measurements using a multiwavelength detector in the neonatal pig brain. Exchange transfusion with perfluorocarbons revealed that the spectrum of cytochrome oxidase in the near-infrared was identical in the neonatal pig, the adult rat, and in the purified enzyme. Under normoxic conditions, the neonatal pig brain contained 15 μmol/L deoxyhemoglobin, 29 μmol/L oxyhemoglobin, and 1.2 μmol/L oxidized cytochrome oxidase. The mitochondrial inhibitor cyanide was used to determine whether redox changes in cytochrome oxidase could be detected in the presence of the larger cerebral hemoglobin concentration. Addition of cyanide induced full reduction of cytochrome oxidase in both blooded and bloodless animals. In the blooded animals, subsequent anoxia caused large changes in hemoglobin oxygenation and concentration but did not affect the cytochrome oxidase near-infrared signal. Simultaneous blood oxygenation level-dependent magnetic resonance imaging measurements showed a good correlation with near-infrared measurements of deoxyhemoglobin concentration. Possible interference in the near-infrared measurements from light scattering changes was discounted by simultaneous measurements of the optical pathlength using the cerebral water absorbance as a standard chromophore. We conclude that, under these conditions, near-infrared spectroscopy can accurately measure changes in the cerebral cytochrome oxidase redox state.


2003 ◽  
Vol 98 (6) ◽  
pp. 1299-1306 ◽  
Author(s):  
Cole A. Giller ◽  
Hanli Liu ◽  
Prem Gurnani ◽  
Sundar Victor ◽  
Umar Yazdani ◽  
...  

Object. The authors have developed an intracranial near-infrared (NIR) probe that analyzes the scattering of light emitted from its tip to measure the optical properties of cerebral tissue. Despite its success in distinguishing gray matter from white matter in humans during stereotactic surgery, the limits of this instrument's resolution remain unclear. In this study, the authors determined the spatial resolution of this new probe by using a rodent model supplemented with phantom measurements and computer simulation. Methods. A phantom consisting of Intralipid and gelatin was constructed to resemble a layer of white matter overlying a layer of gray matter. Near-infrared measurements were obtained as the probe was inserted through the gray—white matter transition. A computer simulation of NIR measurements through a gray—white matter transition was also performed using Monte Carlo techniques. The NIR probe was then used to study 19 tracks from the cortical surface through the corpus callosum in an in vivo rodent preparation. The animals were killed and histological sections through the tracks were obtained. Data from the phantom models and computer simulations showed that the NIR probe samples a volume of tissue extending 1 to 1.5 mm in front of the probe tip (this distance is termed the “lookthrough” distance). Measurements obtained from an NIR probe passing through a thin layer of white matter consisted of an initial segment of increasing values, a maximum (peak) value, and a trailing segment of decreasing values. The length of the initial segment is the lookthrough distance, the position of the peak indicates the location of the superficial white matter boundary, and the length of the trailing segment is the thickness of the layer. These considerations were confirmed in experiments with rodents. All tracks passed through the corpus callosum, which was demonstrated as a broad peak on each NIR graph. The position of the dorsal boundary of the corpus callosum and its width (based on histological measurements) correlated well with the peak of the NIR curve and its trailing segment, respectively. The initial segments correlated well with estimates of the lookthrough distance. Five of the tracks transected the smaller anterior commissure (diameter 0.2 mm), producing a narrow NIR peak at the correct depth. Conclusions. Data in this study confirm that the NIR probe can reliably detect and measure the thickness of layers of white matter as thin as 0.2 mm. Such resolution should be adequate to detect larger structures of interest encountered during stereotactic surgery in humans.


Sign in / Sign up

Export Citation Format

Share Document