scholarly journals Influence of Detector Size and Positioning on Near-Infrared Measurements and Iso-pathlength Point of Turbid Materials

2021 ◽  
Vol 9 ◽  
Author(s):  
Hamootal Duadi ◽  
Idit Feder ◽  
Dror Fixler

Measuring physical phenomena in an experimental system is commonly limited by the detector. When dealing with spatially defined behaviors, the critical parameter is the detector size. In this work, we examine near-infrared (NIR) measurements of turbid media using different size detectors at different positions. We examine cylindrical and semi-infinite scattering samples and measure their intensity distribution. An apparent crossing point between samples with different scatterings was previously discovered and named the iso-pathlength point (IPL). Monte Carlo simulations show the expected changes due to an increase in detector size or similarly as the detector’s location is distanced from the turbid element. First, the simulations show that the intensity profile changes, as well as the apparent IPL. Next, we show the average optical pathlength, and as a result, the differential pathlength factor, are mostly influenced by the detector size in the range close to the source. Experimental measurements using different size detectors at different locations validate the influence of these parameters on the intensity profiles and apparent IPL point. These findings must be considered when assessing optical parameters based on multiple scattering models. In cases such as NIR assessment of tissue oxygenation, size and location may cause false results for absorption or optical path.

2019 ◽  
Vol 16 (11) ◽  
pp. 115602
Author(s):  
D M Kustov ◽  
A S Sharova ◽  
V I Makarov ◽  
A V Borodkin ◽  
T A Saveleva ◽  
...  

2019 ◽  
Vol 27 (2) ◽  
pp. 147-155
Author(s):  
Reisha D Peters ◽  
Scott D Noble

Spectral differences between aqueous solutions of NaCl and KCl have received minimal attention in previous research due to strong similarities between the two salts and the lack of motivation to differentiate between them. Correlations between salinity and absorbance have been developed previously with varying degrees of linearity but have not been tested to saturation. This work will demonstrate that correlating spectral measurements and the concentration of NaCl and KCl in water can be extended up to the saturation point of both salts and that solutions of these salts with unknown concentrations can be distinguished. Spectral data for samples of NaCl and KCl in single-salt solutions were collected up to saturation and correlations were developed for differentiating between solutions of the two species. These correlations were able to correctly identify the solution type for all solutions in the test set and estimate their concentrations with an average error of 0.9%.


1998 ◽  
Vol 6 (1) ◽  
pp. 41-46 ◽  
Author(s):  
Satoru Tsuchikawa

Non-destructive measurements, based on near infrared (NIR) spectroscopy, on biological material with a cellular structure like wood require a non-traditional approach. We have developed new concepts to model the optical properties of a sample having cellular structure, for the illumination conditions of the spectrometer available to us. A set of optical models, which consisted of the directional characteristics models, the light-path models and the equivalent surface roughness model was proposed to clarify the behaviour of light propagation in a wood sample. Furthermore, the mean optical path length, which was derived by incorporating the nth power cosine model of radiant intensity into the diffusion process model in consideration of the parallel beam component of incident light, was calculated. By introducing the concept of equivalent sample thickness, compatible with the mean optical path length, into the Kubelka–Munk theory, generalised input/output equations for radiation were constructed. In this non-traditional application of NIR spectroscopy, these optical concepts make it possible to analyse both the physical condition and chemical composition of a biological material with a cellular structure.


1997 ◽  
Vol 12 (3) ◽  
pp. 96-99 ◽  
Author(s):  
D. Wertheim ◽  
R. Salaman ◽  
J. Melhuish ◽  
R. Williams ◽  
I. Lane ◽  
...  

Background: It has been suggested that poor healing of wounds may be associated with reduced tissue oxygenation. A non-invasive method of assessing peripheral venous oxygenation has been investigated. Method: Changes in oxyhaemoglobin (O2Hb), deoxyhaemoglobin (HHb), oxidized cytochrome aa3 (cyt aa3) and total haemoglobin (tHb) were monitored in the left lower leg of seven healthy volunteers. A short period of venous occlusion was achieved by rapidly inflating a sphygmomanometer cuff placed around the leg to 60 mmHg. The changes in O2Hb and tHb, with respect to the baseline readings, were evaluated. PSvO2 was calculated from (ΔO2Hb/ΔtHb) × 100%. Results: From 17 sets of readings on the seven volunteers the median PSvO2 calculated was 64% (range 50–86%). Conclusion: This method appears to be a simple means of evaluating PSvO2. A change in cyt aa3 was often seen associated with the venous occlusion.


2015 ◽  
Vol 08 (03) ◽  
pp. 1541005 ◽  
Author(s):  
M. S. Wróbel ◽  
A. P. Popov ◽  
A. V. Bykov ◽  
M. Kinnunen ◽  
M. Jędrzejewska-Szczerska ◽  
...  

Extensive research in the area of optical sensing for medical diagnostics requires development of tissue phantoms with optical properties similar to those of living human tissues. Development and improvement of in vivo optical measurement systems requires the use of stable tissue phantoms with known characteristics, which are mainly used for calibration of such systems and testing their performance over time. Optical and mechanical properties of phantoms depend on their purpose. Nevertheless, they must accurately simulate specific tissues they are supposed to mimic. Many tissues and organs including head possess a multi-layered structure, with specific optical properties of each layer. However, such a structure is not always addressed in the present-day phantoms. In this paper, we focus on the development of a plain-parallel multi-layered phantom with optical properties (reduced scattering coefficient [Formula: see text] and absorption coefficient μa) corresponding to the human head layers, such as skin, skull, and gray and white matter of the brain tissue. The phantom is intended for use in noninvasive diffuse near-infrared spectroscopy (NIRS) of human brain. Optical parameters of the fabricated phantoms are reconstructed using spectrophotometry and inverse adding-doubling calculation method. The results show that polyvinyl chloride-plastisol (PVCP) and zinc oxide ( ZnO ) nanoparticles are suitable materials for fabrication of tissue mimicking phantoms with controlled scattering properties. Good matching was found between optical properties of phantoms and the corresponding values found in the literature.


Sign in / Sign up

Export Citation Format

Share Document