Using near infrared measurements to evaluate NaCl and KCl in water

2019 ◽  
Vol 27 (2) ◽  
pp. 147-155
Author(s):  
Reisha D Peters ◽  
Scott D Noble

Spectral differences between aqueous solutions of NaCl and KCl have received minimal attention in previous research due to strong similarities between the two salts and the lack of motivation to differentiate between them. Correlations between salinity and absorbance have been developed previously with varying degrees of linearity but have not been tested to saturation. This work will demonstrate that correlating spectral measurements and the concentration of NaCl and KCl in water can be extended up to the saturation point of both salts and that solutions of these salts with unknown concentrations can be distinguished. Spectral data for samples of NaCl and KCl in single-salt solutions were collected up to saturation and correlations were developed for differentiating between solutions of the two species. These correlations were able to correctly identify the solution type for all solutions in the test set and estimate their concentrations with an average error of 0.9%.

2017 ◽  
Vol 142 ◽  
pp. 943-949 ◽  
Author(s):  
Olivia Winn ◽  
Kiran Thekkemadathil Sivaram ◽  
Ioanna Aslanidou ◽  
Jan Skvaril ◽  
Konstantinos Kyprianidis

NIR news ◽  
2019 ◽  
Vol 30 (5-6) ◽  
pp. 35-38
Author(s):  
Verena Wiedemair ◽  
Christian Wolfgang Huck

The use of ever smaller near-infrared instruments is becoming more and more prevalent, since they are cheaper, more versatile and often advertised as high-performance spectrometer. The last claim is rarely verified by independent researchers, which is why the presented work evaluates the performance of three hand-held spectrometers in comparison to a benchtop instrument. Seventy-seven samples comprising buckwheat, millet and oat were investigated for their total antioxidant capacity using Folin–Ciocalteu and near-infrared spectroscopy. Partial least squares regression models were established using cross- and test set validation. Results showed that all instruments were able to predict total antioxidant capacity to some extent. The coefficients of determinations ranged from 0.823 to 0.951 for cross-validated and from 0.849 to 0.952 for test set validated models. Errors for cross-validated models ranged from 1.11 to 2.08 mgGAE/g and for test set validated models from 1.02 to 1.86 mgGAE/g.


2002 ◽  
Vol 10 (3) ◽  
pp. 203-214 ◽  
Author(s):  
N. Gierlinger ◽  
M. Schwanninger ◽  
B. Hinterstoisser ◽  
R. Wimmer

The feasibility of Fourier transform near infrared (FT-NIR) spectroscopy to rapidly determine extractive and phenolic content in heartwood of larch trees ( Larix decidua MILL., L. leptolepis (LAMB.) CARR. and the hybrid L. x eurolepis) was investigated. FT-NIR spectra were collected from wood powder and solid wood using a fibre-optic probe. Partial Least Squares (PLS) regression analyses were carried out describing relationships between the data sets of wet laboratory chemical data and the FT-NIR spectra. Besides cross and test set validation the established models were subjected to a further evaluation step by means of additional wood samples with unknown extractive content. Extractive and phenol contents of these additional samples were predicted and outliers detected through Mahalanobis distance calculations. Models based on the whole spectral range and without data pre-processing performed well in cross-validation and test set validation, but failed in the evaluation test, which is based on spectral outlier detection. But selection of data pre-processing methods and manual as well as automatic restriction of wavenumber ranges considerably improved the model predictability. High coefficients of determination ( R2) and low root mean square errors of cross-validation ( RMSECV) were obtained for hot water extractives ( R2 = 0.96, RMSECV = 0.86%, range = 4.9–20.4%), acetone extractives ( R2 = 0.86, RMSECV = 0.32%, range = 0.8–3.6%) and phenolic substances ( R2 = 0.98, RMSECV = 0.21%, range = 0.7–4.9%) from wood powder. The models derived from wood powder spectra were more precise than those obtained from solid wood strips. Overall, NIR spectroscopy has proven to be an easy to facilitate, reliable, accurate and fast method for non-destructive wood extractive determination.


1996 ◽  
Vol 13 (3) ◽  
pp. 165-176 ◽  
Author(s):  
Luis R. Pizzio ◽  
Patricia G. Vázquez ◽  
Carmen V. Cáceres ◽  
Mirta N. Blanco

The equilibrium parameters of molybdenum and tungsten adsorption on alumina were compared. Adsorptions were performed from aqueous solutions of monomeric or polymeric ions of these elements. For all solutions tested, molybdenum showed a greater affinity for alumina than tungsten. Assuming a pore-filling impregnation of alumina spheres, a model that interprets this process was used for the calculation of theoretical profiles which showed a smooth decrease in concentration along the sphere radius. In turn, the experimental profiles were similar to those predicted for impregnations with solutions of heptameric molybdate, monomeric molybdate and monomeric tungstate. For polymeric tungstate, however, the experimental tungsten concentration rapidly fell to zero near the sphere surface. Using diffuse reflectance spectroscopy, it was observed that the molybdenum was in tetrahedral and octahedral coordination in spheres impregnated with polymeric or monomeric molybdenum solutions; in addition, the ratio of the concentrations of these species was approximately the same. The species observed in spheres impregnated with tungsten solutions was monomeric tungstate, indicating a distortion in tetrahedral symmetry as a consequence of interaction with the alumina.


2019 ◽  
Vol 27 (5(137)) ◽  
pp. 150-159
Author(s):  
Simona Kliś ◽  
Maciej Thomas ◽  
Krzysztof Barbusiński ◽  
Klaudiusz Gołombek ◽  
Łukasz Krzemiński ◽  
...  

The article compares the classic Fenton reagent (Fe2+/H2O2) with its modification with zero-valent iron (ZVI/H2O2) to remove azo dye Acid Red 27 from aqueous solutions at a concentration of 100 mg/L. For both methods, the most favorable parameter values ​​were determined at which visual discoloration of the solutions tested was obtained (for Fe2+/H2O2:pH 3.5, H2O2=60 mg/L, Fe2+/H2O2=0.3, t=15 min, and for ZVI/H2O2: pH 3, H2O2=40 mg/L, ZVI=80 mg/L, t=15 min). Under these conditions, the COD value was reduced by 71.5% and 69.2% for the classic Fenton and its modification, respectively. A reduction in toxicity was also obtained for Vibrio fischeri bacteria to below 25% by using the Microtox test. ZVI digestion at acidic pH for 10 minutes allowed to shorten the reaction time by about four times - from 15 to 4 minutes. BET analysis showed that the specific surface area increases with the digestion time, which significantly accelerates the reaction. The visual discoloration of aqueous solutions was obtained, and the final COD values ​​were very small, ranging from 49-53 mg O2/L. According to the Vibrio fischeri toxicity classification test for water samples, all solutions of dyes tested can be considered as non-toxic (toxicity value <25%). In the study presented, results of decreasing the COD value and concentration of the dye in the ZVI/H2O2 method obtained are slightly worse compared to the Fe2+/H2O2 method. However, taking the decolorisation time as a criterion, a four times faster decolorisation time was obtained in the ZVI/H2O2 method, compared to the Fe2+/H2O2 method.


2021 ◽  
Vol 9 ◽  
Author(s):  
Hamootal Duadi ◽  
Idit Feder ◽  
Dror Fixler

Measuring physical phenomena in an experimental system is commonly limited by the detector. When dealing with spatially defined behaviors, the critical parameter is the detector size. In this work, we examine near-infrared (NIR) measurements of turbid media using different size detectors at different positions. We examine cylindrical and semi-infinite scattering samples and measure their intensity distribution. An apparent crossing point between samples with different scatterings was previously discovered and named the iso-pathlength point (IPL). Monte Carlo simulations show the expected changes due to an increase in detector size or similarly as the detector’s location is distanced from the turbid element. First, the simulations show that the intensity profile changes, as well as the apparent IPL. Next, we show the average optical pathlength, and as a result, the differential pathlength factor, are mostly influenced by the detector size in the range close to the source. Experimental measurements using different size detectors at different locations validate the influence of these parameters on the intensity profiles and apparent IPL point. These findings must be considered when assessing optical parameters based on multiple scattering models. In cases such as NIR assessment of tissue oxygenation, size and location may cause false results for absorption or optical path.


Sign in / Sign up

Export Citation Format

Share Document