A multi-dimensional trust evaluation model for large-scale P2P computing

2011 ◽  
Vol 71 (6) ◽  
pp. 837-847 ◽  
Author(s):  
Xiaoyong Li ◽  
Feng Zhou ◽  
Xudong Yang
2018 ◽  
pp. 172-182 ◽  
Author(s):  
Shengmin CAO

This paper mainly studies the application of intelligent lighting control system in different sports events in large sports competition venues. We take the Xiantao Stadium, a large­scale sports competition venue in Zaozhuang City, Shandong Province as an example, to study its intelligent lighting control system. In this paper, the PID (proportion – integral – derivative) incremental control model and the Karatsuba multiplication model are used, and the intelligent lighting control system is designed and implemented by multi­level fuzzy comprehensive evaluation model. Finally, the paper evaluates the actual effect of the intelligent lighting control system. The research shows that the intelligent lighting control system designed in this paper can accurately control the lighting of different sports in large stadiums. The research in this paper has important practical significance for the planning and design of large­scale sports competition venues.


2019 ◽  
Vol 11 (12) ◽  
pp. 1453 ◽  
Author(s):  
Shanxin Zhang ◽  
Cheng Wang ◽  
Lili Lin ◽  
Chenglu Wen ◽  
Chenhui Yang ◽  
...  

Maintaining the high visual recognizability of traffic signs for traffic safety is a key matter for road network management. Mobile Laser Scanning (MLS) systems provide efficient way of 3D measurement over large-scale traffic environment. This paper presents a quantitative visual recognizability evaluation method for traffic signs in large-scale traffic environment based on traffic recognition theory and MLS 3D point clouds. We first propose the Visibility Evaluation Model (VEM) to quantitatively describe the visibility of traffic sign from any given viewpoint, then we proposed the concept of visual recognizability field and Traffic Sign Visual Recognizability Evaluation Model (TSVREM) to measure the visual recognizability of a traffic sign. Finally, we present an automatic TSVREM calculation algorithm for MLS 3D point clouds. Experimental results on real MLS 3D point clouds show that the proposed method is feasible and efficient.


2019 ◽  
Vol 29 (06) ◽  
pp. 2050099
Author(s):  
Tao Wang ◽  
Jinyan Cai ◽  
Yafeng Meng ◽  
Meng Lv ◽  
Zexi Li

There are some shortcomings, such as huge hardware resource consumption, functional differentiation is difficult and limited fault detection coverage, when embryonic cellular array (ECA) is used to design large-scale circuit. In this paper, the structure characteristics and communication method of multicellular organism are analyzed briefly, and a new bio-inspired ECA based on bus structure (BECA) is proposed, besides that the corresponding self-repairing strategy is designed. First, the functional decomposition has been applied in BECA, which uses bus structure to realize internal communication. BECA consists of bus and electronic tissues (ET), which can be used to realize large-scale circuit. C17 circuit in ISCAS85 circuit library is chosen as experiment subject, and experiment simulation results indicate that BECA based on bus structure is suitable for large-scale circuit, and the faults occurred in ET can be repaired effectively. In order to research BECA from the mathematical point of view, the reliability evaluation model of BECA is established, which is based on [Formula: see text]-out-of-[Formula: see text] system reliability model. In addition, the hardware resource consumption model of BECA is established by analyzing the number of metal oxide semiconductor (MOS) transistors that ECA consumed. Based on BECA reliability and hardware resource consumption evaluation model, comparative experiment is studied, and the results indicate that the proposed ECA can improve the reliability of circuit and reduce hardware resource consumption effectively. Therefore, the BECA presented will play an important role in designing large-scale digital circuit with self-repairing ability.


Sign in / Sign up

Export Citation Format

Share Document