Rhenium(I)-based fluorescence resonance energy transfer probe for conformational changes of bovine serum albumin

2012 ◽  
Vol 227 (1) ◽  
pp. 38-44 ◽  
Author(s):  
Jayaraman Bhuvaneswari ◽  
Ayub Khan Fathima ◽  
Seenivasan Rajagopal
Luminescence ◽  
2015 ◽  
Vol 31 (3) ◽  
pp. 688-693 ◽  
Author(s):  
Zhijun Bai ◽  
Yushuang Liu ◽  
Ping Zhang ◽  
Jun Guo ◽  
Yuxing Ma ◽  
...  

RSC Advances ◽  
2017 ◽  
Vol 7 (42) ◽  
pp. 26250-26255 ◽  
Author(s):  
Arun Singh Patel ◽  
Praveen Mishra ◽  
Pawan K. Kanaujia ◽  
Syed Shariq Husain ◽  
G. Vijaya Prakash ◽  
...  

The resonance energy transfer (RET) from tryptophan present in bovine serum albumin (BSA) to two dimensional (2D) nanomaterials has been reported.


2009 ◽  
Vol 297 (2) ◽  
pp. C290-C298 ◽  
Author(s):  
Kristin Rule Gleitsman ◽  
Michihiro Tateyama ◽  
Yoshihiro Kubo

Prestin is a membrane protein expressed in the outer hair cells (OHCs) in the cochlea that is essential for hearing. This unique motor protein transduces a change in membrane potential into a considerable mechanical force, which leads to a cell length change in the OHC. The nonlinear capacitance in cells expressing prestin is recognized to reflect the voltage-dependent conformational change of prestin, of which its precise nature remains unknown. In the present work, we aimed to detect the conformational changes of prestin by a fluorescence resonance energy transfer (FRET)-based technique. We heterologously expressed prestin labeled with fluorophores at the COOH- or NH2-terminus in human embryonic kidney-293T cells, and monitored FRET changes on depolarization-inducing high KCl application. We detected a significant decrease in intersubunit FRET both between the COOH-termini and between the COOH- and NH2-termini. A similar FRET decrease was observed when membrane potential was directly and precisely controlled by simultaneous patch clamp. Changes in FRET were suppressed by either of two treatments known to abolish nonlinear capacitance, V499G/Y501H mutation and sodium salicylate. Our results are consistent with significant movements in the COOH-terminal domain of prestin upon change in membrane potential, providing the first dynamic information on its molecular rearrangements.


2011 ◽  
Vol 392 (1-2) ◽  
Author(s):  
Michael Börsch

Abstract Conformational changes of proteins can be monitored in real time by fluorescence resonance energy transfer (FRET). Two different fluorophores have to be attached to those protein domains which move during function. Distance fluctuations between the fluorophores are measured by relative fluorescence intensity changes or fluorescence lifetime changes. The rotary mechanics of the two motors of FoF1-ATP synthase have been studied in vitro by single-molecule FRET. The results are summarized and perspectives for other transport ATPases are discussed.


Sign in / Sign up

Export Citation Format

Share Document