Numerical study of grain boundary effect on Li+ effective diffusivity and intercalation-induced stresses in Li-ion battery active materials

2013 ◽  
Vol 240 ◽  
pp. 155-167 ◽  
Author(s):  
Sangwoo Han ◽  
Jonghyun Park ◽  
Wei Lu ◽  
Ann Marie Sastry
2019 ◽  
Vol 794 ◽  
pp. 65-70
Author(s):  
Yuichi Tadano

Dislocation structures at crystalline scale play an important role in the scale effect of materials. The higher-order crystal plasticity, in which a dislocation information is introduced as the gradient of slip and affects the hardening behavior of slip, is a useful model to describe a scale dependency of metallic material. In this study, a large deformation finite element analysis of a bicrystalline micropillar is demonstrated to investigate the grain boundary effect on the dislocation motion. The effect of condition on the grain boundary is numerically discussed. It is suggested that the large angle grain boundary and the coherent twin boundary can be represented by boundary conditions of non-penetration and penetration of dislocation.


2010 ◽  
Vol 97 (17) ◽  
pp. 174101 ◽  
Author(s):  
Ming Li ◽  
Jie Yang ◽  
Karim Snoussi ◽  
Lixin Li ◽  
Huixin Wang ◽  
...  

1999 ◽  
Vol 14 (1) ◽  
pp. 120-123 ◽  
Author(s):  
D. J. Wang ◽  
J. Qiu ◽  
Y. C. Guo ◽  
Z. L. Gui ◽  
L. T. Li

Yttrium-doped (Sr0.45Pb0.55)TiO3 ceramics have been studied by complex impedance analysis. As a sort of NTC-PTC composite thermistor, it exhibited a significantly large negative temperature coefficient of resistivity below Tc in addition to the ordinary PTC characteristics above Tc. It is found that the NTC effect in NTC-PTC materials was not originated from the deep energy level of donor (bulk behavior), but from the electrical behavior of the grain boundary. Therefore, the NTC-PTC composite effect was assumed to be a grain boundary effect, and yttrium was a donor at shallow energy level. The NTC-PTC ceramics were grain boundary controlled materials.


Author(s):  
Roozbeh Pouyanmehr ◽  
Morteza Pakseresht ◽  
Reza Ansari ◽  
Mohammad Kazem Hassanzadeh-Aghdam

One of the limiting factors in the life of lithium-ion batteries is the diffusion-induced stresses on their electrodes that cause cracking and consequently, failure. Therefore, improving the structure of these electrodes to be able to withstand these stresses is one of the ways that can extend the life of the batteries as well as improve their safety. In this study, the effects of adding graphene nanoplatelets and microparticles into the active plate and current collectors, respectively, on the diffusion induced stresses in both layered and bilayered electrodes are numerically investigated. The micromechanical models are employed to predict the mechanical properties of both graphene nanoplatelet-reinforced Sn-based nanocomposite active plate and silica microparticle-reinforced copper composite current collector. The effect of particle size and volume fraction in the current collector on diffusion induced stresses has been studied. The results show that in electrodes with a higher volume fraction of particles and smaller particle radii, decreased diffusion induced stresses in both the active plate and the current collector are observed. These additions will also result in a significant decrease in the bending of the electrode.


Sign in / Sign up

Export Citation Format

Share Document