Synthesis of porous graphene/activated carbon composite with high packing density and large specific surface area for supercapacitor electrode material

2014 ◽  
Vol 258 ◽  
pp. 290-296 ◽  
Author(s):  
Chao Zheng ◽  
Xufeng Zhou ◽  
Hailiang Cao ◽  
Guohua Wang ◽  
Zhaoping Liu
2016 ◽  
Vol 45 (3) ◽  
pp. 164-171 ◽  
Author(s):  
Linjie Su ◽  
Bohong Li ◽  
Dongyu Zhao ◽  
Chuanli Qin ◽  
Zheng Jin

Purpose The purpose of this paper is to prepare a new modified activated carbon fibers (ACFs) of high specific capacitance used for electrode material of supercapacitor. Design/methodology/approach In this study, the specific capacitance of ACF was significantly increased by using the phenolic resin microspheres and melamine as modifiers to prepare modified PAN-based activated carbon fibers (MACFs) via electrospinning, pre-oxidation and carbonization. The symmetrical supercapacitor (using MACF as electrode) and hybrid supercapacitor (using MACF and activated carbon as electrodes) were tested in term of electrochemical properties by cyclic voltammetry, AC impedance and cycle stability test. Findings It was found that the specific capacitance value of the modified fibers were increased to 167 Fg-1 by adding modifiers (i.e. 20 wt.% microspheres and 15 wt.% melamine) compared to that of unmodified fibers (86.17 Fg-1). Specific capacitance of modified electrode material had little degradation over 10,000 cycles. This result can be attributed to that the modifiers embedded into the fibers changed the original morphology and enhanced the specific surface area of the fibers. Originality/value The modified ACFs in our study had high specific surface area and significantly high specific capacitance, which can be applied as efficient and environmental absorbent, and advanced electrode material of supercapacitor.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1982
Author(s):  
Qinghua Yuan ◽  
Zhuwen Ma ◽  
Junbiao Chen ◽  
Zhenrui Huang ◽  
Zeming Fang ◽  
...  

The recycling of macromolecular biowastes has been a problem for the agriculture industry. In this study, a novel N, S-codoped activated carbon material with an ultrahigh specific area was produced for the application of a supercapacitor electrode, using tobacco stalk biowastes as the carbon source, KOH as the activating agents and thiourea as the doping agent. Tobacco stalk is mainly composed of cellulose, but also contains many small molecules and inorganic salts. KOH activation resulted in many mesopores, giving the tobacco stem-activated carbon a large specific surface area and double-layer capacitance. The specific surface area of the samples reached up to 3733 m2·g−1, while the maximum specific capacitance of the samples obtained was up to 281.3 F·g−1 in the 3-electrode tests (1 A·g−1). The doping of N and S elements raised the specific capacitance significantly, which could be increased to a value as high as 422.5 F·g−1 at a current density of 1 A·g−1 in the 3-electrode tests, but N, S-codoping also led to instability. The results of this article prove that tobacco stalks could be efficiently reused in the field of supercapacitors.


RSC Advances ◽  
2018 ◽  
Vol 8 (74) ◽  
pp. 42280-42291 ◽  
Author(s):  
Ling Zhang ◽  
Ling-yu Tu ◽  
Yan Liang ◽  
Qi Chen ◽  
Ze-sheng Li ◽  
...  

Activated carbon fibers with high micropore volume and large specific surface area were prepared from abundant and low-cost coconut fibers, which show excellent adsorption performances towards various dyes.


2013 ◽  
Vol 785-786 ◽  
pp. 749-752
Author(s):  
Ya Jun Luo ◽  
Qian Yan ◽  
Yong Chao Zhou ◽  
Deng Liang He ◽  
Xiao Li Hu

Activated carbon was modified with silica aerogel by the Sol-Gel. The surface characteristics and structure of activated carbon modified by the silica aerogel were characterized with N2 adsorption method, Scanning Electron Microscope and Thermal Analysis. The experiment results show that the silica aerogel can be used to modify activated carbon for the preparation of composite. SiO2 aerogel can effectively cover holes in the activated carbon, specific surface area of activated carbon composite modified by SiO2 aerogel was between activated carbon and silica aerogel. When MSiO2: MC is 1:3, specific surface area of the composite was 758.638 m2/g; When MSiO2:MC is 1:2, specific surface area of the composite was 760.38 m2/g; When MSiO2:MC is 1:1, specific surface area of the composite was 862.755 m2/g.


Author(s):  
Lei Zhao ◽  
Ziwei Lan ◽  
Junyu Su ◽  
Huazhu Liang ◽  
Jiayu Yao ◽  
...  

Compared with precious metal catalysts, non-platinum catalysts have the advantages of low cost and high performance. Among them, the activated carbon (AC) with a large specific surface area (SSA) can be used as a carrier or as a carbon source of nonprecious metal/carbon system catalyst at the same time. Therefore, this paper uses cheap pine peel bio-based materials to prepare large surface area activated carbon and then compound with cobalt phthalocyanine (CoPc) to obtain a high-performance cobalt/nitrogen/carbon catalyst. The merits include AC@CoPc composite catalysts are prepared by precisely controlling the composite proportion of AC and CoPc, the atomically dispersed Co nanoparticles form and synergistically with N promote the exposure of CoNx active sites, and the Eonset of the catalyst treated with a composite proportion of AC and CoPc of 1 to 2 at 800 °C (AC@CoPc-800-1-2) is 1.01 V, which is higher than Pt/C (20 wt%) catalyst. Apart from this, the stability is 87.8% in 0.1 M KOH after 20000 s testing in compared with other AC@CoPc series catalysts and Pt/C (20 wt%) catalyst. Considering from the performance and price of the catalyst in practical application, these composite catalysts combine biomass carbon materials with phthalocyanine series, which will be widely used in the area of nonprecious metal catalysts.


Author(s):  
Wenbo Geng ◽  
Qing Wang ◽  
Jianfeng Dai ◽  
Haoran Gao

The performance of supercapacitor electrode materials was greatly affected by the specific surface area. The urchin-like NiCo2O4 was transformed into porous NiCo2O4 (AA-NiCo2O[Formula: see text] using the acid–alkali treatment method. The specific surface area of AA-NiCo2O4 was 165.0660 m2/g, which was about three times larger than that of NiCo2O4. The specific capacitance of the AA-NiCo2O4 was enhanced significantly (1700 F/g at 1 A/g), and AA-NiCo2O4 possesses good rate capacitance (1277 F/g at 10 A/g). This is mainly attributed to the larger specific surface area, fast and convenient electron–ion transport and redox reaction. Therefore, AA-NiCo2O4 is a promising high-performance supercapacitor electrode material.


Sign in / Sign up

Export Citation Format

Share Document