scholarly journals High Level Oxygen Reduction Catalysts Derived from the Compounds of Large Specific Surface Area Pine Peel Activated Carbon and Phthalocyanine Cobalt

Author(s):  
Lei Zhao ◽  
Ziwei Lan ◽  
Junyu Su ◽  
Huazhu Liang ◽  
Jiayu Yao ◽  
...  

Compared with precious metal catalysts, non-platinum catalysts have the advantages of low cost and high performance. Among them, the activated carbon (AC) with a large specific surface area (SSA) can be used as a carrier or as a carbon source of nonprecious metal/carbon system catalyst at the same time. Therefore, this paper uses cheap pine peel bio-based materials to prepare large surface area activated carbon and then compound with cobalt phthalocyanine (CoPc) to obtain a high-performance cobalt/nitrogen/carbon catalyst. The merits include AC@CoPc composite catalysts are prepared by precisely controlling the composite proportion of AC and CoPc, the atomically dispersed Co nanoparticles form and synergistically with N promote the exposure of CoNx active sites, and the Eonset of the catalyst treated with a composite proportion of AC and CoPc of 1 to 2 at 800 °C (AC@CoPc-800-1-2) is 1.01 V, which is higher than Pt/C (20 wt%) catalyst. Apart from this, the stability is 87.8% in 0.1 M KOH after 20000 s testing in compared with other AC@CoPc series catalysts and Pt/C (20 wt%) catalyst. Considering from the performance and price of the catalyst in practical application, these composite catalysts combine biomass carbon materials with phthalocyanine series, which will be widely used in the area of nonprecious metal catalysts.

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3429
Author(s):  
Lei Zhao ◽  
Ziwei Lan ◽  
Wenhao Mo ◽  
Junyu Su ◽  
Huazhu Liang ◽  
...  

Non-platinum carbon-based catalysts have attracted much more attention in recent years because of their low cost and outstanding performance, and are regarded as one of the most promising alternatives to precious metal catalysts. Activated carbon (AC), which has a large specific surface area (SSA), can be used as a carrier or carbon source at the same time. In this work, stable pine peel bio-based materials were used to prepare large-surface-area activated carbon and then compound with cobalt phthalocyanine (CoPc) to obtain a high-performance cobalt/nitrogen/carbon (Co-N-C) catalyst. High catalytic activity is related to increasing the number of Co particles on the large-specific-area activated carbon, which are related with the immersing effect of CoPc into the AC and the rational decomposed temperature of the CoPc ring. The synergy with N promoting the exposure of CoNx active sites is also important. The Eonset of the catalyst treated with a composite proportion of AC and CoPc of 1 to 2 at 800 °C (AC@CoPc-800-1-2) is 1.006 V, higher than the Pt/C (20 wt%) catalyst. Apart from this, compared with other AC/CoPc series catalysts and Pt/C (20 wt%) catalyst, the stability of AC/CoPc-800-1-2 is 87.8% in 0.1 M KOH after 20,000 s testing. Considering the performance and price of the catalyst in a practical application, these composite catalysts combining biomass carbon materials with phthalocyanine series could be widely used in the area of catalysts and energy storage.


2022 ◽  
Author(s):  
Kainan Li ◽  
Ke Zheng ◽  
Zhifang Zhang ◽  
Kuan Li ◽  
Ziyao Bian ◽  
...  

Abstract Construction of metal selenides with a large specific surface area and a hollow structure is one of the effective methods to improve the electrochemical performance of supercapacitors. However, the nano-material easily agglomerates due to the lack of support, resulting in the loss of electrochemical performance. Herein, we successfully design a three-dimensional graphene (3DG) encapsulation-protected hollow nanoboxes (CoSe2-SnSe2) composite aerogel (3DG/CoSe2-SnSe2) via a co-precipitation method coupled with self-assembly route, followed by a high temperature selenidation strategy. The obtained aerogel possesses porous 3DG conductive network, large specific surface area and plenty of reactive active sites. It could be used as a flexible and binder-free electrode after a facile mechanical compression process, which provided a high specific capacitance of 460 F g-1 at 0.5 A g-1, good rate capability of 212.7 F g-1 at 10 A g-1, and excellent cycle stability due to the fast electron/ion transfer and electrolyte diffusion. With the as-prepared 3DG/CoSe2-SnSe2 as positive electrodes and the AC (activated carbon) as negative electrodes, an asymmetric supercapacitor (3DG/CoSe2-SnSe2//AC) was fabricated, which delivered a high specific capacity of 38 F g-1 at 1A g-1 and an energy density of 11.89 W h kg-1 at 749.9 W kg-1, as well as a capacitance retention of 91.1% after 3000 cycles. This work provides a new method for preparing electrode material.


2021 ◽  
Vol 14 (02) ◽  
pp. 2151011
Author(s):  
Jingwen Jia ◽  
Longfu Wei ◽  
Ziting Guo ◽  
Fang Li ◽  
Changlin Yu ◽  
...  

Metal–organic frameworks (MOFs) are the electrocatalytic materials with large specific surface area, high porosity, controllable structure and monodisperse active center, which is a promising candidate for the application of electrochemical energy conversion. However, the electrocatalytic performance of pure MOFs is seriously limited its poor conductivity and stability. In this work, high-performance electrocatalyst was fabricated through combining NiFe/MOF on nickel foam (NF) via in-situ growth strategy. Through rational control of the time and ratio in reaction precursors, we realized the effective manipulation of the growth behavior, and further investigated the electrocatalytic performance in water splitting. The catalyst presented excellent electrocatalytic performance for water splitting, with low overpotential of 260 mV in alkaline condition at a current density of 50 mA[Formula: see text], which is benefited from the large specific surface area and active sites. This study demonstrates that the rational design of NiFe MOF/NF plays a significant role in high-performance electrocatalyst.


TANSO ◽  
2020 ◽  
Vol 2020 (294) ◽  
pp. 122-126
Author(s):  
Jun’ichi Hayashi ◽  
Isao Hasegawa ◽  
Toki Hagihara ◽  
Takumi Takara

RSC Advances ◽  
2018 ◽  
Vol 8 (74) ◽  
pp. 42280-42291 ◽  
Author(s):  
Ling Zhang ◽  
Ling-yu Tu ◽  
Yan Liang ◽  
Qi Chen ◽  
Ze-sheng Li ◽  
...  

Activated carbon fibers with high micropore volume and large specific surface area were prepared from abundant and low-cost coconut fibers, which show excellent adsorption performances towards various dyes.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7020
Author(s):  
Nan Li ◽  
Qiwei Sun ◽  
Peiping Zhang ◽  
Shubo Jing

Pelagic clay is an emerging marine resource with strong hydrophilicity, fine particles and a large specific surface area. In this work, a 1T-MoS2/pelagic clay composite was fabricated by hydrothermal synthesis. In the composite, 1T-MoS2 nanosheets are evenly dispersed on the surface of the clay minerals, significantly reducing the agglomeration of MoS2. Compared with pure 1T-MoS2, the 1T-MoS2 nanosheets generated on the surface of pelagic clay have significantly smaller lateral dimensions and thicknesses. Moreover, the specific surface area is much larger than that of the pure 1T-MoS2 nanosheets fabricated by the same method, indicating that the active sites of the MoS2 sheets are fully exposed. In addition, the composite exhibited excellent hydrophilicity, leading to a high dispersibility in aqueous solutions. In this work, the composite was used as a catalyst in the reduction of 4-nitrophenol (4-NP), and the conversion of 4-NP reached up to 96.7%. This result shows that the 1T-MoS2/pelagic clay composite is a promising catalyst in a variety of reactions.


Sign in / Sign up

Export Citation Format

Share Document