Thermal aging of electrolytes used in lithium-ion batteries – An investigation of the impact of protic impurities and different housing materials

2014 ◽  
Vol 267 ◽  
pp. 255-259 ◽  
Author(s):  
Patricia Handel ◽  
Gisela Fauler ◽  
Katja Kapper ◽  
Martin Schmuck ◽  
Christoph Stangl ◽  
...  
2021 ◽  
Vol 13 (10) ◽  
pp. 5726
Author(s):  
Aleksandra Wewer ◽  
Pinar Bilge ◽  
Franz Dietrich

Electromobility is a new approach to the reduction of CO2 emissions and the deceleration of global warming. Its environmental impacts are often compared to traditional mobility solutions based on gasoline or diesel engines. The comparison pertains mostly to the single life cycle of a battery. The impact of multiple life cycles remains an important, and yet unanswered, question. The aim of this paper is to demonstrate advances of 2nd life applications for lithium ion batteries from electric vehicles based on their energy demand. Therefore, it highlights the limitations of a conventional life cycle analysis (LCA) and presents a supplementary method of analysis by providing the design and results of a meta study on the environmental impact of lithium ion batteries. The study focuses on energy demand, and investigates its total impact for different cases considering 2nd life applications such as (C1) material recycling, (C2) repurposing and (C3) reuse. Required reprocessing methods such as remanufacturing of batteries lie at the basis of these 2nd life applications. Batteries are used in their 2nd lives for stationary energy storage (C2, repurpose) and electric vehicles (C3, reuse). The study results confirm that both of these 2nd life applications require less energy than the recycling of batteries at the end of their first life and the production of new batteries. The paper concludes by identifying future research areas in order to generate precise forecasts for 2nd life applications and their industrial dissemination.


2019 ◽  
Author(s):  
Hui Yang ◽  
Jia-Yue Yang ◽  
Christopher Savory ◽  
Jonathan Skelton ◽  
Benjamin Morgan ◽  
...  

<div>LiCoO<sub>2</sub> is the prototype cathode in lithium ion batteries. It adopts a crystal structure with alternating Li<sup>+</sup> and CoO<sub>2</sub><sup>-</sup> layers along the hexagonal <0001> axis. It is well established that ionic and electronic conduction is highly anisotropic; however, little is known regarding heat transport. We analyse the phonon dispersion and lifetimes of LiCoO<sub>2</sub> using anharmonic lattice dynamics based on quantum chemical force constants. Around room temperature, the thermal conductivity in the hexagonal ab plane of the layered cathode is ≈ 6 times higher than that along the c axis based on the phonon Boltzmann transport. The low thermal conductivity (< 10Wm<sup>-1</sup>K<sup>-1</sup>) originates from a combination of short phonon lifetimes associated with anharmonic interactions between the octahedral face-sharing CoO<sub>2</sub><sup>-</sup> networks, as well as grain boundary scattering. The impact on heat management and thermal processes in lithium ion batteries based on layered positive electrodes is discussed.</div>


Ionics ◽  
2010 ◽  
Vol 16 (6) ◽  
pp. 503-507 ◽  
Author(s):  
Jianguo Ren ◽  
Xiangming He ◽  
Ke Wang ◽  
Weihua Pu

2018 ◽  
Vol 51 (2) ◽  
pp. 220-225 ◽  
Author(s):  
Sara Mohajer ◽  
Jocelyn Sabatier ◽  
Patrick Lanusse ◽  
Olivier Cois

2019 ◽  
Author(s):  
Hui Yang ◽  
Jia-Yue Yang ◽  
Christopher Savory ◽  
Jonathan Skelton ◽  
Benjamin Morgan ◽  
...  

<div>LiCoO<sub>2</sub> is the prototype cathode in lithium ion batteries. It adopts a crystal structure with alternating Li<sup>+</sup> and CoO<sub>2</sub><sup>-</sup> layers along the hexagonal <0001> axis. It is well established that ionic and electronic conduction is highly anisotropic; however, little is known regarding heat transport. We analyse the phonon dispersion and lifetimes of LiCoO<sub>2</sub> using anharmonic lattice dynamics based on quantum chemical force constants. Around room temperature, the thermal conductivity in the hexagonal ab plane of the layered cathode is ≈ 6 times higher than that along the c axis based on the phonon Boltzmann transport. The low thermal conductivity (< 10Wm<sup>-1</sup>K<sup>-1</sup>) originates from a combination of short phonon lifetimes associated with anharmonic interactions between the octahedral face-sharing CoO<sub>2</sub><sup>-</sup> networks, as well as grain boundary scattering. The impact on heat management and thermal processes in lithium ion batteries based on layered positive electrodes is discussed.</div>


Author(s):  
Austin Henke ◽  
Elizabeth Dina Laudadio ◽  
Jenny K Hedlund Orbeck ◽  
Ali Abbaspour Tamijani ◽  
Khoi Nguyen Hoang ◽  
...  

Among high-valence metal oxides, LiCoO2 and related materials are of environmental importance because of the rapidly increasing use of these materials as cathodes in lithium ion batteries. Understanding the impact...


Sign in / Sign up

Export Citation Format

Share Document