The impact of calendar aging on the thermal stability of a LiMn2O4–Li(Ni1/3Mn1/3Co1/3)O2/graphite lithium-ion cell

2014 ◽  
Vol 268 ◽  
pp. 315-325 ◽  
Author(s):  
Patrick Röder ◽  
Barbara Stiaszny ◽  
Jörg C. Ziegler ◽  
Nilüfer Baba ◽  
Paul Lagaly ◽  
...  
2013 ◽  
Author(s):  
Jr Morris ◽  
Shardo Robert W. ◽  
Higgins James ◽  
Cook Kim ◽  
Tanner Rhonda ◽  
...  

Author(s):  
Q. Wu ◽  
Y. Lei ◽  
F. Yao ◽  
Y. Xu ◽  
K. Lian

Composites based on high density polyethylene (HDPE), pine flour, and organic clay were made by melt compounding and injection molding. The influence of clay on crystallization behavior, mechanical properties, water absorption, and thermal stability of HDPE/pine composites were investigated. The HDPE/pine composites containing exfoliated clay were made by a two-step melt compounding procedure with a maleated polyethylene (MAPE) as a compatibilizer. Adding 2% clay to a HDPE/pine composite without MAPE decreased the crystallization temperature (Tc) and rate, and the crystallinity level. When 2% MAPE was added, the Tc and crystallization rate increased, but the crystallinity level was lowered. The flexural strength and the tensile strength of HDPE/pine composites increased 19.6% and 24.2% respectively with addition of 1% clay but then decreased slightly as the clay content was increased to 3%. The tensile modulus and tensile elongation were increased 11.8% and 13% respectively with addition of 1% clay but the storage and loss moduli barely change as the clay content was increased to 3%. The impact strength was lowered 7.5% by adding 1% clay, but did not decrease further as more clay was added. The moisture content and thickness swelling of the HDPE/pine composites was reduced by the clay, but did not improve the thermal stability.


2012 ◽  
Vol 535-537 ◽  
pp. 154-160 ◽  
Author(s):  
Anizah Kalam ◽  
M.N. Berhan ◽  
Hanafi Ismail

Hybrid composites were prepared by incorporating oil palm fruit bunch (OPFB) fibre in the mixture of clay and polypropylene as secondary filler. OPFB and MAPP loadings were varied to investigate it effects on the performance. Tensile and impact tests were performed on the hybrid composites to evaluate their mechanical performances. Water absorption and thermal degradation tests were also conducted on the hybrid composites. Results indicated that the incorporation of OPFB in PP/PPnanoclay has decreased the thermal stability of hybrid composites. Tensile modulus of hybrid composites increased as the OPFB loading increases and further increased with the increasing of MAPP loading. Generally the tensile strength has decreased with the addition of OPFB, however slight increased was observed when the MAPP loading was increased. The impact strength has also increased with the increasing of OPFB for higher MAPP loading.


Sign in / Sign up

Export Citation Format

Share Document