scholarly journals Tailored porous electrode resistance for controlling electrolyte depletion and improving charging response in electrochemical systems

2018 ◽  
Vol 397 ◽  
pp. 252-261 ◽  
Author(s):  
James W. Palko ◽  
Ali Hemmatifar ◽  
Juan G. Santiago
2019 ◽  
Vol 1 (1) ◽  
pp. 18-23
Author(s):  
Ah Heng You ◽  
Pei Ling Cheang

A general supercapacitor model is developed by incorporating the effective surface area in the presence of pores. An analytical solution has been derived from the generic equation in Laplace domain based on the porous-electrode theory. This model demonstrates the effects of solution to matrix conductivity ratio, separator to electrode resistance ratio and discharge current density on the electrochemical impedance, capacitance and energy density of supercapacitor. The electrochemical impedance, capacitance and energy density of supercapacitor are calculated in this work. The maximum capacitance of 12.71 F/cm2was computed in low frequency range in this device. The proposed model can be applied to simulate the characteristics of polymer-based supercapacitor in near future.


2020 ◽  
Vol 84 (9) ◽  
pp. 1062-1064
Author(s):  
Yu. N. Shalimov ◽  
V. I. Kudryash

2020 ◽  
Vol 56 (6) ◽  
pp. 697-703
Author(s):  
B. I. Rachiy ◽  
Yu. Yu. Starchuk ◽  
P. I. Kolkovskyy ◽  
I. M. Budzulyak ◽  
L. S. Yablon ◽  
...  

2020 ◽  
Vol 96 (3s) ◽  
pp. 450-455
Author(s):  
В.Г. Криштоп ◽  
Д.А. Жевненко ◽  
П.В. Дудкин ◽  
Е.С. Горнев ◽  
В.Г. Попов ◽  
...  

Электрохимические системы очень перспективны для разработки новой элементной базы для микроэлектроники и для использования в широком спектре инженерных задач. Мы разработали новую микроэлектронную технологию для изготовления электрохимических преобразователей (ЭХП) и новые приборы на основе новых электрохимических микроэлектронных чипов. Планарные электрохимические преобразователи могут использоваться в акселерометрах, сейсмических датчиках, датчиках вращения, гидрофонах и датчиках давления. Electrochemical systems are very promising for the development of a new element base for microelectronics, and for use in a wide range of engineering applications. We have developed a new microelectronic technology for manufacturing electrochemical transducers (ECP) and new devices based on new electrochemical microelectronic chips. Planar electrochemical transducers are used in accelerometers, seismic sensors, rotation sensors, hydrophones and pressure sensors.


2021 ◽  
Vol 86 (3) ◽  
Author(s):  
Jeffery M. Allen ◽  
Justin Chang ◽  
Francois L. E. Usseglio-Viretta ◽  
Peter Graf ◽  
Kandler Smith

AbstractBattery performance is strongly correlated with electrode microstructure. Electrode materials for lithium-ion batteries have complex microstructure geometries that require millions of degrees of freedom to solve the electrochemical system at the microstructure scale. A fast-iterative solver with an appropriate preconditioner is then required to simulate large representative volume in a reasonable time. In this work, a finite element electrochemical model is developed to resolve the concentration and potential within the electrode active materials and the electrolyte domains at the microstructure scale, with an emphasis on numerical stability and scaling performances. The block Gauss-Seidel (BGS) numerical method is implemented because the system of equations within the electrodes is coupled only through the nonlinear Butler–Volmer equation, which governs the electrochemical reaction at the interface between the domains. The best solution strategy found in this work consists of splitting the system into two blocks—one for the concentration and one for the potential field—and then performing block generalized minimal residual preconditioned with algebraic multigrid, using the FEniCS and the Portable, Extensible Toolkit for Scientific Computation libraries. Significant improvements in terms of time to solution (six times faster) and memory usage (halving) are achieved compared with the MUltifrontal Massively Parallel sparse direct Solver. Additionally, BGS experiences decent strong parallel scaling within the electrode domains. Last, the system of equations is modified to specifically address numerical instability induced by electrolyte depletion, which is particularly valuable for simulating fast-charge scenarios relevant for automotive application.


Nano Letters ◽  
2021 ◽  
Author(s):  
Xiao Zhang ◽  
Zeyu Hui ◽  
Steven King ◽  
Lei Wang ◽  
Zhengyu Ju ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document