scholarly journals High capacity semi-liquid lithium sulfur cells with enhanced reversibility for application in new-generation energy storage systems

2019 ◽  
Vol 412 ◽  
pp. 575-585 ◽  
Author(s):  
Daniele Di Lecce ◽  
Vittorio Marangon ◽  
Almudena Benítez ◽  
Álvaro Caballero ◽  
Julián Morales ◽  
...  
Author(s):  
Peisen Wu ◽  
Yongbo Wu ◽  
Kaiyin Zhu ◽  
Guozheng Ma ◽  
Xiaoming Lin ◽  
...  

Lithium-sulfur (Li-S) batteries have recently caught a growing number of attentions as next-generation energy storage systems on account of their outstanding theoretical energy density, environmental friendliness and economical nature. However,...


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 631
Author(s):  
Aleksander Cholewinski ◽  
Pengxiang Si ◽  
Marianna Uceda ◽  
Michael Pope ◽  
Boxin Zhao

Binders play an important role in electrode processing for energy storage systems. While conventional binders often require hazardous and costly organic solvents, there has been increasing development toward greener and less expensive binders, with a focus on those that can be processed in aqueous conditions. Due to their functional groups, many of these aqueous binders offer further beneficial properties, such as higher adhesion to withstand the large volume changes of several high-capacity electrode materials. In this review, we first discuss the roles of binders in the construction of electrodes, particularly for energy storage systems, summarize typical binder characterization techniques, and then highlight the recent advances on aqueous binder systems, aiming to provide a stepping stone for the development of polymer binders with better sustainability and improved functionalities.


RSC Advances ◽  
2019 ◽  
Vol 9 (59) ◽  
pp. 34430-34436
Author(s):  
Chang Wang ◽  
Jianbao Wu ◽  
Xiaoyi Li ◽  
Yiming Mi

Reversible lithium–sulfur batteries (LSBs) are considered one of the most promising next-generation energy storage systems.


Nanoscale ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 6832-6843 ◽  
Author(s):  
Jun Xu ◽  
Qi Zhang ◽  
Xin Liang ◽  
Jian Yan ◽  
Jiaqin Liu ◽  
...  

Rare earth oxides, for example scandium oxide, may open up a new prospect towards the development of advanced Li–S batteries and other energy storage systems.


2017 ◽  
Vol 5 (33) ◽  
pp. 17352-17359 ◽  
Author(s):  
Shikui Wu ◽  
Yingze Wang ◽  
Shengsang Na ◽  
Chaojun Chen ◽  
Tengfei Yu ◽  
...  

Lithium–sulfur (Li–S) batteries are promising energy storage systems owing to their high theoretical energy density and low costs due to the abundant reserves of sulfur.


RSC Advances ◽  
2020 ◽  
Vol 10 (28) ◽  
pp. 16570-16575
Author(s):  
Meltem Yanilmaz

Lithium–sulfur (Li–S) batteries are the most promising energy storage systems owing to their high energy density.


2020 ◽  
Vol 8 (37) ◽  
pp. 19544-19554
Author(s):  
Juan Li ◽  
Youlong Xu ◽  
Yuan Zhang ◽  
Cheng He ◽  
Tongtong Li

Lithium–sulfur batteries (LSBs) have been exploited as advanced energy storage systems owing to their high theoretical specific capacity.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2954
Author(s):  
Eunji Kim ◽  
Albert S. Lee ◽  
Taewoong Lee ◽  
Hyeok Jun Seo ◽  
Seongwook Chae ◽  
...  

Lithium–sulfur batteries are considered as attractive candidates for next-generation energy storage systems originating from their high theoretical capacity and energy density. However, the severe shuttling of behavior caused by the dissolution of lithium polysulfide intermediates during cycling remains a challenge for practical applications. Herein, porous carbon materials co-doped with nitrogen and sulfur atoms were prepared through a facile hydrothermal reaction of graphene oxide and methylene blue to obtain a suitable host structure for regulating the lithium polysulfide shuttling behavior. Experimental results demonstrated that the abundant heteroatom-containing moieties in the carbon frameworks not only generated favorable active sites for capturing lithium polysulfide but also enhanced redox reaction kinetics of lithium polysulfide intermediates. Consequently, the corresponding sulfur composite electrodes exhibited excellent rate performance and cycling stability along with high Columbic efficiency. This work highlights the approach for the preparation of nitrogen and sulfur co-doped carbon materials derived from organic dye compounds for high performance energy storage systems.


Author(s):  
Shuang Zhao ◽  
Yajuan Kang ◽  
Minjie Liu ◽  
Bihan Wen ◽  
Qi Fang ◽  
...  

Lithium-sulfur (Li-S) battery is one of the most promising next-generation energy-storage systems. Nevertheless, owing to the low conductivity of sulfur species and the sluggish redox reaction, plenty of soluble lithium...


Sign in / Sign up

Export Citation Format

Share Document