Enhanced redox kinetics of polysulfides by nano-rod FeOOH for ultrastable lithium–sulfur batteries

2020 ◽  
Vol 8 (37) ◽  
pp. 19544-19554
Author(s):  
Juan Li ◽  
Youlong Xu ◽  
Yuan Zhang ◽  
Cheng He ◽  
Tongtong Li

Lithium–sulfur batteries (LSBs) have been exploited as advanced energy storage systems owing to their high theoretical specific capacity.

Author(s):  
Peisen Wu ◽  
Yongbo Wu ◽  
Kaiyin Zhu ◽  
Guozheng Ma ◽  
Xiaoming Lin ◽  
...  

Lithium-sulfur (Li-S) batteries have recently caught a growing number of attentions as next-generation energy storage systems on account of their outstanding theoretical energy density, environmental friendliness and economical nature. However,...


2022 ◽  
Author(s):  
Fengfeng Han ◽  
Qi Jin ◽  
Junpeng Xiao ◽  
Lili Wu ◽  
Xitian Zhang

Lithium–sulfur batteries (LBSs) have potential to become the future energy storage system, yet they are plagued by the sluggish redox kinetics. Therefore, enhancing the redox kinetics of polysulfide is a...


RSC Advances ◽  
2019 ◽  
Vol 9 (59) ◽  
pp. 34430-34436
Author(s):  
Chang Wang ◽  
Jianbao Wu ◽  
Xiaoyi Li ◽  
Yiming Mi

Reversible lithium–sulfur batteries (LSBs) are considered one of the most promising next-generation energy storage systems.


Nanoscale ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 6832-6843 ◽  
Author(s):  
Jun Xu ◽  
Qi Zhang ◽  
Xin Liang ◽  
Jian Yan ◽  
Jiaqin Liu ◽  
...  

Rare earth oxides, for example scandium oxide, may open up a new prospect towards the development of advanced Li–S batteries and other energy storage systems.


2017 ◽  
Vol 5 (33) ◽  
pp. 17352-17359 ◽  
Author(s):  
Shikui Wu ◽  
Yingze Wang ◽  
Shengsang Na ◽  
Chaojun Chen ◽  
Tengfei Yu ◽  
...  

Lithium–sulfur (Li–S) batteries are promising energy storage systems owing to their high theoretical energy density and low costs due to the abundant reserves of sulfur.


Nanoscale ◽  
2019 ◽  
Vol 11 (33) ◽  
pp. 15418-15439 ◽  
Author(s):  
Fang Li ◽  
Quanhui Liu ◽  
Jiawen Hu ◽  
Yuezhan Feng ◽  
Pengbin He ◽  
...  

Li–S batteries are regarded as a promising candidate for next-generation energy storage systems due to their high specific capacity (1675 mA h g−1) and energy density (2600 W h kg−1) as well as the abundance, safety and low cost of S material.


Author(s):  
Zhihao Wang ◽  
zhihao zeng ◽  
Wei Nong ◽  
Zhen Yang ◽  
Chenze Qi ◽  
...  

Lithium sulfur battery is one of the most promising applicants for the next generation of energy storage devices whose commercial applications are impeded by the key issue of shuttle effect....


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2954
Author(s):  
Eunji Kim ◽  
Albert S. Lee ◽  
Taewoong Lee ◽  
Hyeok Jun Seo ◽  
Seongwook Chae ◽  
...  

Lithium–sulfur batteries are considered as attractive candidates for next-generation energy storage systems originating from their high theoretical capacity and energy density. However, the severe shuttling of behavior caused by the dissolution of lithium polysulfide intermediates during cycling remains a challenge for practical applications. Herein, porous carbon materials co-doped with nitrogen and sulfur atoms were prepared through a facile hydrothermal reaction of graphene oxide and methylene blue to obtain a suitable host structure for regulating the lithium polysulfide shuttling behavior. Experimental results demonstrated that the abundant heteroatom-containing moieties in the carbon frameworks not only generated favorable active sites for capturing lithium polysulfide but also enhanced redox reaction kinetics of lithium polysulfide intermediates. Consequently, the corresponding sulfur composite electrodes exhibited excellent rate performance and cycling stability along with high Columbic efficiency. This work highlights the approach for the preparation of nitrogen and sulfur co-doped carbon materials derived from organic dye compounds for high performance energy storage systems.


Author(s):  
Shuang Zhao ◽  
Yajuan Kang ◽  
Minjie Liu ◽  
Bihan Wen ◽  
Qi Fang ◽  
...  

Lithium-sulfur (Li-S) battery is one of the most promising next-generation energy-storage systems. Nevertheless, owing to the low conductivity of sulfur species and the sluggish redox reaction, plenty of soluble lithium...


Author(s):  
Shunyou Hu ◽  
Mingjie Yi ◽  
Xiyan Huang ◽  
Dong Wu ◽  
Beibei Lu ◽  
...  

Lithium–sulfur (Li–S) batteries are considered as the most promising next–generation energy storage owing to their excellent theoretical specific capacity (1675 mA h g-1) and abundant availability of sulfur resources at...


Sign in / Sign up

Export Citation Format

Share Document