Optical properties of mixed aerosol layers over Japan derived with multi-wavelength Mie–Raman lidar system

Author(s):  
Yukari Hara ◽  
Tomoaki Nishizawa ◽  
Nobuo Sugimoto ◽  
Ichiro Matsui ◽  
Xiaole Pan ◽  
...  
2020 ◽  
Vol 237 ◽  
pp. 07018
Author(s):  
Jaswant ◽  
Shishir Kumar Singh ◽  
Radhakrishnan S.R. ◽  
Devesh Shukla ◽  
Chhemendra Sharma

The determination of vertical distribution of optical properties of clouds and aerosols using the lidar system is affected by the incomplete overlap between the field of view of transmitter i.e. laser beam & the receiver in the near‐field range. Thus, the study of vertical profiles of aerosol optical properties in the lower atmosphere is erroneous without the correction of lidar overlap function. Here we have analysed the effect of overlap using a simple technique proposed by Ansmann and Wandinger to determine overlap function. We have determined the overlap factor for 5 different days of June 2016 and then calculated the mean overlap profile and determined the relative deviation of each day with respect to mean overlap factor. Results reveal that the complete overlap was achieved beyond 300 meters.


2012 ◽  
Vol 5 (1) ◽  
pp. 589-625
Author(s):  
R. E. Mamouri ◽  
A. Papayannis ◽  
V. Amiridis ◽  
D. Müller ◽  
P. Kokkalis ◽  
...  

Abstract. A novel procedure has been developed to retrieve, simultaneously, the optical, microphysical and chemical properties of tropospheric aerosols with a multi-wavelength Raman lidar system in the troposphere over an urban site (Athens, Greece: 37.9° N, 23.6° E, 200 m a.s.l.) using data obtained during the European Space Agency (ESA) THERMOPOLIS project which took place between 15–31 July 2009 over the Greater Athens Area (GAA). We selected to apply our procedure for a case study of intense aerosol layers occurred on 20–21 July 2009. The National Technical University of Athens (NTUA) EOLE 6-wavelength Raman lidar system has been used to provide the vertical profiles of the optical properties of aerosols (extinction and backscatter coefficients, lidar ratio) and the water vapor mixing ratio. An inversion algorithm was used to derive the mean aerosol microphysical properties (mean effective radius – reff), single-scattering albedo (ω) and mean complex refractive index (m) at selected heights in the 2–3 km height region. We found that reff was 0.3–0.4 μm, ω at 532 nm ranged from 0.63 to 0.88 and m ranged from 1.45 + 0.015i to 1.56 + 0.05i, in good accordance with in situ aircraft measurements. The final data set of the aerosol microphysical properties along with the water vapor and temperature profiles were incorporated into the ISORROPIA model to infer an in situ aerosol composition consistent with the retrieved m and ω values. The retrieved aerosol chemical composition in the 2–3 km height region gave a variable range of sulfate (0–60%) and organic carbon (OC) content (0–50%), although the OC content increased (up to 50%) and the sulfate content dropped (up to 30%) around 3 km height; in connection with the retrieved low ω value (0.63), indicates the presence of absorbing biomass burning smoke mixed with urban haze. Finally, the retrieved aerosol microphysical properties were compared with column-integrated sunphotometer data.


2007 ◽  
Vol 86 (1) ◽  
pp. 76-87 ◽  
Author(s):  
Young M. Noh ◽  
Young J. Kim ◽  
Byoung C. Choi ◽  
Toshiyuki Murayama

2013 ◽  
Vol 29 (4) ◽  
pp. 415-421 ◽  
Author(s):  
Youngmin Noh ◽  
Chulkyu Lee ◽  
Kwanchul Kim ◽  
Sungkyun Shin ◽  
Dongho Shin ◽  
...  

2012 ◽  
Vol 5 (7) ◽  
pp. 1793-1808 ◽  
Author(s):  
R. E. Mamouri ◽  
A. Papayannis ◽  
V. Amiridis ◽  
D. Müller ◽  
P. Kokkalis ◽  
...  

Abstract. A novel procedure has been developed to retrieve, simultaneously, the optical, microphysical and chemical properties of tropospheric aerosols with a multi-wavelength Raman lidar system in the troposphere over an urban site (Athens, Greece: 37.9° N, 23.6° E, 200 m a.s.l.) using data obtained during the European Space Agency (ESA) THERMOPOLIS project, which took place between 15–31 July 2009 over the Greater Athens Area (GAA). We selected to apply our procedure for a case study of intense aerosol layers that occurred on 20–21 July 2009. The National Technical University of Athens (NTUA) EOLE 6-wavelength Raman lidar system has been used to provide the vertical profiles of the optical properties of aerosols (extinction and backscatter coefficients, lidar ratio) and the water vapor mixing ratio. An inversion algorithm was used to derive the mean aerosol microphysical properties (mean effective radius (reff), single-scattering albedo ω) and mean complex refractive index (m)) at selected heights in the 2–3 km height region. We found that reff was 0.14–0.4 (±0.14) μm, ω was 0.63–0.88 (±0.08) (at 532 nm) and m ranged from 1.44 (±0.10) + 0.01 (±0.01)i to 1.55 (±0.12) + 0.06 (±0.02)i, in good agreement (only for the reff values) with in situ aircraft measurements. The water vapor and temperature profiles were incorporated into the ISORROPIA II model to propose a possible in situ aerosol composition consistent with the retrieved m and ω values. The retrieved aerosol chemical composition in the 2–3 km height region gave a variable range of sulfate (0–60%) and organic carbon (OC) content (0–50%), although the OC content increased (up to 50%) and the sulfate content dropped (up to 30%) around 3 km height; the retrieved low ω value (0.63), indicates the presence of absorbing biomass burning smoke mixed with urban haze. Finally, the retrieved aerosol microphysical properties were compared with column-integrated sun photometer CIMEL data.


2020 ◽  
Vol 237 ◽  
pp. 07007
Author(s):  
Qi Liu ◽  
Bingyi Liu ◽  
Songhua Wu ◽  
Jintao Liu ◽  
Kailin Zhang ◽  
...  

A ship-borne multi-wavelength polarization ocean lidar system LOOP (Lidar for Ocean Optics Profiler) is introduced in detail, aiming to obtain high-precision vertical profiles of seawater optical characteristics. Based on Monte-Carlo simulation, the receiving telescope is designed with a variable field of view, producing system attenuation coefficient (Klidar) approximating the optical parameters of seawater under a different field of view and water body conditions. At first, a sea trial was conducted in Jiaozhou Bay, and the measured diffuse attenuation coefficient (Kd) of seawater was 0.3m−1, being in good agreement compared with the results measured by field instrument TriOS. Then a field campaign was organized in the South China Sea. The measurement of the seawater diffuse attenuation (Kd) was 0.035m−1. These results support the prospects that lidar, as an effective tool supplement to traditional passive ocean color remote sensing, can provide the vertical distributions of optical properties in the upper ocean.


2021 ◽  
Author(s):  
José-Alex Zenteno-Hernández

<p>Pure-rotational Raman (PRR) scattering has proven to be an efficient technique for the determination of atmospheric aerosol optical properties for lidar applications. We present the implementation of a UV-PRR and the design of a VIS-PRR in the EARLINET/UPC multi-wavelength lidar system (Barcelona, Spain). State-of-the-art computations of N<sub>2</sub> and O<sub>2</sub> differential backscatter cross-sections weighted by the optical losses inside the optical separation unit of the system allow for the theoretical estimation of the expected signal-to-noise ratios (SNR) in both UV and VIS channels. By means of customized optical interference filters UV-PRR signals from atmospheric N<sub>2</sub> and O<sub>2</sub> were detected and compared to the classical vibro-rotational Raman signals. UV-PRR detected signals have shown to possess high SNR and relative uncertainty levels lower than a tolerable 15% for daytime and nighttime measurements. The theoretical analysis of the VIS-PRR channel augurs improvements similar to those observed with the UV-PRR channel.</p>


Sign in / Sign up

Export Citation Format

Share Document