Non-Markovian Approach to Pressure Broadening of Isolated Lines in Spectra of Light Rotators

Author(s):  
A.P. Kouzov ◽  
A.V. Sokolov ◽  
N.N. Filippov
Information ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 103
Author(s):  
Casey C. Bennett

This paper discusses the creation of an agent-based simulation model for interactive robotic faces, built based on data from physical human–robot interaction experiments, to explore hypotheses around how we might create emergent robotic personality traits, rather than pre-scripted ones based on programmatic rules. If an agent/robot can visually attend and behaviorally respond to social cues in its environment, and that environment varies, then idiosyncratic behavior that forms the basis of what we call a “personality” should theoretically be emergent. Here, we evaluate the stability of behavioral learning convergence in such social environments to test this idea. We conduct over 2000 separate simulations of an agent-based model in scaled-down, abstracted forms of the environment, each one representing an “experiment”, to see how different parameters interact to affect this process. Our findings suggest that there may be systematic dynamics in the learning patterns of an agent/robot in social environments, as well as significant interaction effects between the environmental setup and agent perceptual model. Furthermore, learning from deltas (Markovian approach) was more effective than only considering the current state space. We discuss the implications for HRI research, the design of interactive robotic faces, and the development of more robust theoretical frameworks of social interaction.


1989 ◽  
Vol 114 ◽  
pp. 296-299
Author(s):  
J. L. Provencal ◽  
J. C. Clemens ◽  
G. Henry ◽  
B. P. Hine ◽  
R. E. Nather ◽  
...  

White dwarf stars provide important boundary conditions for the understanding of stellar evolution. An adequate understanding of even these simple stars is impossible without detailed knowledge of their interiors. PG1346+082, an interacting binary white dwarf system, provides a unique opportunity to view the interior of one degenerate as it is brought to light in the accretion disk of the second star as the primary strips material from its less massive companion (see Wood et at. 1987).PG1346+082 is a photometric variable with a four magnitude variation over a four to five day quasi-period. A fast Fourier transform (FFT) of the light curve shows a complex, time-dependent structure of harmonics. PG1346+082 exhibits flickering – the signature of mass transfer. The optical spectra of the system contain weak emission features during minimum and broad absorption at all other times. This could be attributed to pressure broadening in the atmosphere of a compact object, or to a combination of pressure broadening and doppler broadening in a disk surrounding the compact accretor. No hydrogen lines are observed and the spectra are dominated by neutral helium. The spectra also display variable asymmetric line profiles.


1973 ◽  
Vol 28 (9) ◽  
pp. 1385-1388
Author(s):  
S. Hess ◽  
H. Vestner

The correlation function of the tensor polarization relevant for the depolarized Rayleigh line of a gas of rotating linear molecules is calculated for the pressure broadening regime. Point of depar­ture is the Waldmann-Snider equation for the distribution function of the gas. Due to the collisional coupling between the tensor polarization and other moments of the distribution function the cor­relation function turns out to be a sum of exponential functions. Consequently the depolarized Rayleigh line has a non-Lorentzian shape.


1971 ◽  
Vol 26 (10) ◽  
pp. 1639-1643
Author(s):  
S. Hess ◽  
H. F. P. Knaap

Abstract Due to the coupling between the rotational angular momentum and the electronic spin, the depolarized Rayleigh light scattered from gaseous oxygen shows Stokes and anti-Stokes satellites shifted by about 60 GHz. The broadening of these fine-structure Raman lines is investigated theoretically for high and medium pressures where the linewidth is determined by two contributions, one proportional and the other inversely proportional to the pressure, p. The linewidth in the pressure broadening region is given by a relaxation frequency which is obtained from the Waldmann-Snider collision term. The p-1 contribution to the linewidth is determined by the ratio of the second moment of the fine-structure freqencies (with respect to the center of the shifted line) and another relaxation frequency. Both relaxation frequencies are sensitive to the nonspherical part of the inter-molecular potential.


Sign in / Sign up

Export Citation Format

Share Document