scholarly journals Dynamic constitutive model for soils considering asymmetry of skeleton curve

2013 ◽  
Vol 5 (5) ◽  
pp. 400-405 ◽  
Author(s):  
Guoxing Chen ◽  
Hua Pan ◽  
Hui Long ◽  
Xiaojun Li
2021 ◽  
Vol 248 ◽  
pp. 01024
Author(s):  
Hong Wang

In order to study the effects of corrosion damage on the hysteresis properties of high strength steel (HSS), dry-wet cycle corrosion tests were conducted on Q690D steel to obtain 6 batches of corroded specimens, and cyclic loading tests were performed on them to analyse the degradation law of hysteresis curve, skeleton curve and hysteretic energy, and then establish the hysteresis constitutive model of corroded HSS steel. Results indicated that although the hysteresis curves of corroded specimens are still smooth and full, corrosion damage would result in the continuous decrease of peak stress, and lead to the linear reduction of hysteresis energy. Besides, the cyclic hardening coefficient K’ and cyclic hardening index n’ of HSS would also decrease linearly with corrosion degree. Based on these experimental results, a new hysteresis constitutive model for corroded HSS steel was proposed, and its validity was verified.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Shan-hua Xu ◽  
Guang-chong Qin ◽  
Zong-xing Zhang

This paper aims to study the hysteretic characteristics of the steel plates artificially corroded by neutral salt spray. Salt spray was applied to accelerate the corrosion on the steel plates; specimens of varying degrees of corrosion were obtained in this manner. And each specimen was subject to cyclic loading test to get the hysteretic curve. Then the experimental results were extensively discussed, focusing on strength and ductility, hysteretic energy, the skeleton curve, and unloading and loading curve. After that, the hysteretic constitutive model of corroded steel was established based on the first time loading criterion, unloading criterion, cycle skeleton criterion, and reloading curve criterion. The result of the experiment showed that, with the increase of the degree of corrosion, the mechanical properties and seismic energy dissipation performance of seismic energy of the steel decreased; the deterioration of ductility got aggravated. On the other hand, the skeleton curve and the Ramberg-Osgood model were well matched, and the coefficient of circular enhancement showed a decreasing trend; the variation of cyclic hardening exponent did not have an obvious pattern. Meanwhile, the hysteretic constitutive model of corroded steel and the results of the experiment were well matched.


1988 ◽  
Vol 49 (C3) ◽  
pp. C3-489-C3-496
Author(s):  
B. D. COLEMAN ◽  
M. L. HODGDON

2013 ◽  
Vol 41 (3) ◽  
pp. 174-195 ◽  
Author(s):  
Anuwat Suwannachit ◽  
Udo Nackenhorst

ABSTRACT A new computational technique for the thermomechanical analysis of tires in stationary rolling contact is suggested. Different from the existing approaches, the proposed method uses the constitutive description of tire rubber components, such as large deformations, viscous hysteresis, dynamic stiffening, internal heating, and temperature dependency. A thermoviscoelastic constitutive model, which incorporates all the mentioned effects and their numerical aspects, is presented. An isentropic operator-split algorithm, which ensures numerical stability, was chosen for solving the coupled mechanical and energy balance equations. For the stationary rolling-contact analysis, the constitutive model presented and the operator-split algorithm are embedded into the Arbitrary Lagrangian Eulerian (ALE)–relative kinematic framework. The flow of material particles and their inelastic history within the spatially fixed mesh is described by using the recently developed numerical technique based on the Time Discontinuous Galerkin (TDG) method. For the efficient numerical solutions, a three-phase, staggered scheme is introduced. First, the nonlinear, mechanical subproblem is solved using inelastic constitutive equations. Next, deformations are transferred to the subsequent thermal phase for the solution of the heat equations concerning the internal dissipation as a source term. In the third step, the history of each material particle, i.e., each internal variable, is transported through the fixed mesh corresponding to the convective velocities. Finally, some numerical tests with an inelastic rubber wheel and a car tire model are presented.


Sign in / Sign up

Export Citation Format

Share Document