scholarly journals Experimental Research on Hysteretic Characteristics of Steel Plates Artificially Corroded by Neutral Salt Spray

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Shan-hua Xu ◽  
Guang-chong Qin ◽  
Zong-xing Zhang

This paper aims to study the hysteretic characteristics of the steel plates artificially corroded by neutral salt spray. Salt spray was applied to accelerate the corrosion on the steel plates; specimens of varying degrees of corrosion were obtained in this manner. And each specimen was subject to cyclic loading test to get the hysteretic curve. Then the experimental results were extensively discussed, focusing on strength and ductility, hysteretic energy, the skeleton curve, and unloading and loading curve. After that, the hysteretic constitutive model of corroded steel was established based on the first time loading criterion, unloading criterion, cycle skeleton criterion, and reloading curve criterion. The result of the experiment showed that, with the increase of the degree of corrosion, the mechanical properties and seismic energy dissipation performance of seismic energy of the steel decreased; the deterioration of ductility got aggravated. On the other hand, the skeleton curve and the Ramberg-Osgood model were well matched, and the coefficient of circular enhancement showed a decreasing trend; the variation of cyclic hardening exponent did not have an obvious pattern. Meanwhile, the hysteretic constitutive model of corroded steel and the results of the experiment were well matched.

Metals ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 544 ◽  
Author(s):  
Yakup Kaya

In this study, explosive welding was used in the cladding of aluminum plates to ship steel plates at different explosive ratios. Ship steel-aluminum bimetal composite plates were manufactured and the influence of the explosive ratio on the cladded bonding interface was examined. Optical microscopy (OM), scanning electron microscopy (SEM), and energy dispersive spectrometry (EDS) studies were employed for the characterization of the bonding interface of the manufactured ship steel-aluminum bimetal composites. Tensile-shear, notch impact toughness, bending and twisting tests, and microhardness studies were implemented to determine the mechanical features of the bimetal composite materials. In addition, neutral salt spray (NSS) tests were performed in order to examine the corrosion behavior of the bimetal composites.


2021 ◽  
Vol 248 ◽  
pp. 01024
Author(s):  
Hong Wang

In order to study the effects of corrosion damage on the hysteresis properties of high strength steel (HSS), dry-wet cycle corrosion tests were conducted on Q690D steel to obtain 6 batches of corroded specimens, and cyclic loading tests were performed on them to analyse the degradation law of hysteresis curve, skeleton curve and hysteretic energy, and then establish the hysteresis constitutive model of corroded HSS steel. Results indicated that although the hysteresis curves of corroded specimens are still smooth and full, corrosion damage would result in the continuous decrease of peak stress, and lead to the linear reduction of hysteresis energy. Besides, the cyclic hardening coefficient K’ and cyclic hardening index n’ of HSS would also decrease linearly with corrosion degree. Based on these experimental results, a new hysteresis constitutive model for corroded HSS steel was proposed, and its validity was verified.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 337
Author(s):  
Ewa Wierzbicka ◽  
Marta Mohedano ◽  
Endzhe Matykina ◽  
Raul Arrabal

REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) regulations demand for an expedient discovery of a Cr(VI)-free alternative corrosion protection for light alloys even though the green alternatives might never be as cheap as current harmful technologies. In the present work, flash- plasma electrolytic oxidation coatings (FPEO) with the process duration < 90 s are developed on AZ31B alloy in varied mixtures of silicate-, phosphate-, aluminate-, and fluoride-based alkaline electrolytes implementing current density and voltage limits. The overall evaluation of the coatings’ anticorrosion performance (electrochemical impedance spectroscopy (EIS), neutral salt spray test (NSST), paintability) shows that from nine optimized FPEO recipes, two (based on phosphate, fluoride, and aluminate or silicate mixtures) are found to be an adequate substitute for commercially used Cr(VI)-based conversion coating (CCC). The FPEO coatings with the best corrosion resistance consume a very low amount of energy (~1 kW h m−2 µm−1). It is also found that the lower the energy consumption of the FPEO process, the better the corrosion resistance of the resultant coating. The superb corrosion protection and a solid environmentally friendly outlook of PEO-based corrosion protection technology may facilitate the economic justification for industrial end-users of the current-consuming process as a replacement of the electroless CCC process.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 930
Author(s):  
Juan Jesús Alba-Galvín ◽  
Leandro González-Rovira ◽  
Francisco Javier Botana ◽  
Maria Lekka ◽  
Francesco Andreatta ◽  
...  

The selection of appropriate surface pretreatments is one of the pending issues for the industrial application of cerium-based chemical conversion coatings (CeCC) as an alternative for toxic chromate conversion coating (CrCC). A two-step surface pretreatment based on commercial products has been successfully used here to obtain CeCC on AA2024-T3 and AA7075-T6. Specimens processed for 1 to 15 min in solutions containing CeCl3 and H2O2 have been studied by scanning electron microscopy coupled with energy-dispersive X-ray analysis (SEM-EDX), glow discharge optical emission spectroscopy (GDOES), potentiodynamic linear polarization (LP), electrochemical impedance spectroscopy (EIS), and neutral salt spray (NSS) tests. SEM-EDX showed that CeCC was firstly observed as deposits, followed by a general coverage of the surface with the formation of cracks where the coating was getting thicker. GDOES confirmed an increase of the CeCC thickness as the deposition proceed, the formation of CeCC over 7075 being faster than over 2024. There was a Ce-rich layer in both alloys and an aluminum oxide/hydroxide layer on 7075 between the upper Ce-rich layer and the aluminum matrix. According to LP and EIS, CeCC in all samples offered cathodic protection and comparable degradation in chloride-containing media. Finally, the NSS test corroborated the anti-corrosion properties of the CeCC obtained after the commercial pretreatments employed.


2013 ◽  
Vol 5 (5) ◽  
pp. 400-405 ◽  
Author(s):  
Guoxing Chen ◽  
Hua Pan ◽  
Hui Long ◽  
Xiaojun Li

Author(s):  
Yiming Ma ◽  
Liusheng He ◽  
Ming Li

Steel slit shear walls (SSSWs), made by cutting slits in steel plates, are increasingly adopted in seismic design of buildings for energy dissipation. This paper estimates the seismic energy dissipation capacity of SSSWs considering out-of-plane buckling. In the experimental study, three SSSW specimens were designed with different width-thickness ratios and aspect ratios and tested under quasi-static cyclic loading. Test results showed that the width-thickness ratio of the links dominated the occurrence of out-of-plane buckling, which produced pinching in the hysteresis and thus reduced the energy dissipation capacity. Out-of-plane buckling occurred earlier for the links with a larger width-thickness ratio, and vice versa. Refined finite element model was built for the SSSW specimens, and validated by the test results. The concept of average pinching parameter was proposed to quantify the degree of pinching in the hysteresis. Through the parametric analysis, an equation was derived to estimate the average pinching parameter of the SSSWs with different design parameters. A new method for estimating the energy dissipation of the SSSWs considering out-of-plane buckling was proposed, by which the predicted energy dissipation agreed well with the test results.


Author(s):  
Stephan V. Kozhukharov ◽  
Christian Girginov

<p class="PaperAbstract"><span lang="EN-US">The possibility for combination between Anodized Aluminum Oxide (AAO) and Cerium Oxide Primer Layer (CeOPL) for elaboration of efficient protective coatings for AA2024-T3 aircraft alloy is proposed in the present research. The combined AAO/CeOPL coating characterizations include Electrochemical Impedance Spectroscopy (EIS) combined with Linear Voltammetry (LVA), for extended times (until 2520 hours) to a model corrosive medium (3.5% NaCl). Topographical and cross-sectional (SEM and EDX) observations were performed in order to determine the AAO/CeOPL film thickness and composition. The AAO/CeOPL layer durability tests were confirmed by standard Neutral Salt Spray (NSS). The data analysis from all the used measurement methods has undoubtedly shown that the presence of AAO film significantly improves the cerium oxide primer layer (CeOPL) protective properties and performance. </span></p>


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Qi Si ◽  
Yang Ding ◽  
Liang Zong

Abstract Atmospheric corrosion degrades the mechanical properties of steel structures mainly because of stress concentrations caused by an uneven corrosion topography. Electrolytic corrosion is regarded as one of the most efficient indoor accelerated corrosion approaches, while, the uneven atmospheric corrosion topography usually cannot be well simulated by electrolytic corrosion. This study aims to introduce an electrolytic corrosion solution suitable for simulating atmospheric corrosion. The surface morphologies of the structural steel specimens after electrolytic corrosion in three different solutions under various electrification time and magnitude of the current were compared. The surface characteristics of the corroded steel plates were measured by a 3D noncontact surface topography scanner, and analyzed based on surface roughness theory and fractal theory. The results showed that the mixed solution of 0.5% CH3COONa and 0.2% NaCl will produce pitting corrosion on the steel surface, and the surface morphologies of the steel specimens after electrolytic corrosion were consistent with that of neutral salt spray accelerated corrosion test. It is verified that the electrolytic accelerated corrosion in such a solution can simulate actual atmospheric corrosion reasonably.


Sign in / Sign up

Export Citation Format

Share Document