Geochemistry and C and O isotope composition of carbonate rocks from Bemil and Lagoa Seca quarries, Gandarela Formation, Quadrilátero Ferrífero - Brazil

2019 ◽  
Vol 92 ◽  
pp. 609-630 ◽  
Author(s):  
L.B. Nogueira ◽  
V.Q. Oliveira ◽  
L.P. Araújo ◽  
L.P. Leão ◽  
A. Ali ◽  
...  
2021 ◽  
pp. 93-105
Author(s):  
Petr Ignatov ◽  
Nail Zaripov ◽  
Alexander Tolstov ◽  
Kolesnik Alexander ◽  
Mikhail Maltsev

The paper describes diamondiferous kimberlite area within a new Yakutian Syuldyukarskoye fi ld and presents detailed mapping results of ore-hosting shear evidence, veinlet bleaching of redbeds, outcrops of metagrained pyrite, pyrite-calcite and calcite veinlets hosted by Cambrian terrigenous-carbonate rocks where kimberlites occur. Kimberlite localization is shown at fault junction as well as kimberlite long axis combination with west-northwest orehosting shear. These tectonic structures combine with veinlet bleaching halos, those of pyrite-calcite and calcite veinlets, and calcite druses characterized by red photoluminescence and phosphorescence. Red, blue and partially white photoluminescence is caused by manganese concentration in calcites (> 0,1%). Hydrothermal calcite nature is supported by C and O isotope composition variations, which reflect the input of medium temperature formational and meteoric waters, carbon of sedimentary carbonate rocks and deep hydrocarbons. Anomalous Ba, Cr, Ni and La content is recognized in hydrothermal calcites from near-kimberlite environment. Kimberlite position in the southeastern part of endogenous mineralization halos and greater diamond potential of the western kimberlite body, which is larger compared to the eastern one, allow forecasting of new productive bodies.


Geology ◽  
2019 ◽  
Vol 48 (3) ◽  
pp. 211-215 ◽  
Author(s):  
Stefan T.M. Peters ◽  
Narges Alibabaie ◽  
Andreas Pack ◽  
Seann J. McKibbin ◽  
Davood Raeisi ◽  
...  

Abstract Oxygen isotope ratios in magnetite can be used to study the origin of iron-oxide ore deposits. In previous studies, only 18O/16O ratios of magnetite were determined. Here, we report triple O isotope data (17O/16O and 18O/16O ratios) of magnetite from the iron-oxide–apatite (IOA) deposits of the Yazd and Sirjan areas in central Iran. In contrast to previous interpretations of magnetite from similar deposits, the triple O isotope data show that only a few of the magnetite samples potentially record isotopic equilibrium with magma or with pristine magmatic water (H2O). Instead, the data can be explained if magnetite had exchanged O isotopes with fluids that had a mass-independently fractionated O isotope composition (i.e., MIF-O), and with fluids that had exchanged O isotopes with marine sedimentary carbonate rocks. The MIF-O signature of the fluids was likely obtained by isotope exchange with evaporite rocks of early Cambrian age that are associated with the IOA deposits in central Iran. In order to explain the triple O isotope composition of the magnetite samples in conjunction with available iron isotope data for magnetite from the deposits, we propose that magnetite formed from magmatic fluids that had interacted with evaporite and carbonate rocks at high temperatures and at variable water/rock ratios; e.g., magmatic fluids that had been released into the country rocks of a magma reservoir. Additionally, the magnetite could have formed from magmatic fluids that had exchanged O isotopes with SO2 and CO2 that, in turn, had been derived by the magmatic assimilation and/or metamorphic breakdown of evaporite and carbonate rocks.


Minerals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 94
Author(s):  
Xiaoxue Tong ◽  
Kaarel Mänd ◽  
Yuhao Li ◽  
Lianchang Zhang ◽  
Zidong Peng ◽  
...  

Banded iron formations (BIFs) are enigmatic chemical sedimentary rocks that chronicle the geochemical and microbial cycling of iron and carbon in the Precambrian. However, the formation pathways of Fe carbonate, namely siderite, remain disputed. Here, we provide photomicrographs, Fe, C and O isotope of siderite, and organic C isotope of the whole rock from the ~2.52 Ga Dagushan BIF in the Anshan area, China, to discuss the origin of siderite. There are small magnetite grains that occur as inclusions within siderite, suggesting a diagenetic origin of the siderite. Moreover, the siderites have a wide range of iron isotope compositions (δ56FeSd) from −0.180‰ to +0.463‰, and a relatively negative C isotope composition (δ13CSd = −6.20‰ to −1.57‰). These results are compatible with the reduction of an Fe(III)-oxyhydroxide precursor to dissolved Fe(II) through microbial dissimilatory iron reduction (DIR) during early diagenesis. Partial reduction of the precursor and possible mixing with seawater Fe(II) could explain the presence of siderite with negative δ56Fe, while sustained reaction of residual Fe(III)-oxyhydroxide could have produced siderite with positive δ56Fe values. Bicarbonate derived from both DIR and seawater may have provided a C source for siderite formation. Our results suggest that microbial respiration played an important role in the formation of siderite in the late Archean Dagushan BIF.


Author(s):  
Tao Luo ◽  
Qiuli Li ◽  
Xiaoxiao Ling ◽  
Yang Li ◽  
Chuan Yang ◽  
...  

Zircon U-Pb geochronology and Hf-O isotope composition can provide important information on geological events. The matrix-matched reference material is routinely used to yield accurate and precise zircon U-Pb ages and...


2020 ◽  
Author(s):  
Lan Zhang ◽  
Hong Xie ◽  
Qingguang Li ◽  
Zhenghao Lu ◽  
Yang Bai ◽  
...  

Abstract The carbon and oxygen isotope composition of carbonate rocks is an important index for accurate analysis of the paleo-sea environment, which depends on Mn/Sr, δ 18 O > -10‰, correlativity of δ 13 C and δ 18 O and “age effect” of δ 18 O. This study reports carbon and oxygen isotope data of carbonate rocks from the Dengying Formation in the Xichuan area. δ 13 C values range -1.58‰ to 3.76‰, with an average value of 1.55‰, and δ 18 O values are -14.91‰ to -1.88‰, with an average value of -6.95‰. The δ 18 O values of three samples are less than -10‰, so they are excluded and taken to be correlative with the cracking of the Rodinia supercontinent during the Neoproterozoic. The paleotemperature range 7.40°C to 35.05°C, with an average value of 21.09°C. Paleo-salinity range 8.38‰ to 19.30‰, with an average value of 13.89‰. Z values range 127.80 to 135.03 and thus all exceeded 120, with an average value of 131.25. These calculations indicate that the Xichuan area had deposited marine carbonate rocks, with the hot and dry tropical monsoon climate, and a transgressive process overall during the Dengying age.


2005 ◽  
Vol 231 (1-2) ◽  
pp. 73-86 ◽  
Author(s):  
Simone A. Kasemann ◽  
Chris J. Hawkesworth ◽  
Anthony R. Prave ◽  
Anthony E. Fallick ◽  
Paul N. Pearson

2021 ◽  
Author(s):  
Ming Jian Cao ◽  
Noreen J. Evans ◽  
Pete Hollings ◽  
David R. Cooke ◽  
Brent I.A. McInnes ◽  
...  

Abstract The trace elemental and isotopic signatures in apatite can be modified during hydrothermal alteration. This study investigates the suitability of apatite as an indicator of the source, chemistry, and evolution of magma and hydrothermal fluids. In situ textural, elemental, and O-Sr-Nd isotope analyses were performed on apatite in thin sections, from fresh and propylitically altered pre- and synmineralized dioritic porphyries from the Black Mountain porphyry Cu deposit in the Philippines. All studied apatite crystals have similar subhedral to euhedral shapes and are homogeneous in the grayscale in backscattered electron images. In cathodoluminescence images, the apatite in fresh and altered rocks displays yellow to yellow-green and green to brown luminescence, respectively. Apatite in fresh rocks has a higher Cl and Mn content, and lower Fe, Mg, Sr, Pb, and calculated XOH-apatite, compared to apatite in altered rocks. The content of F, rare earth elements (REEs), Y, U, Th, and Zr, and the Sr-Nd isotope signatures of apatite from fresh and altered rocks are similar in all apatite grains (87Sr/86Sr = 0.7034–0.7042 vs. 0.7032–0.7043, εNd(t) = 5.3–8.0 vs. 5.1–8.4). The X-ray maps and elemental and oxygen isotope signatures across individual apatite crystals are typically homogeneous in apatite from both fresh and altered rocks. The distinct luminescence colors, coupled with distinct mobile element compositions (Cl, OH, Mn, Mg, Fe, Sr, Pb), indicate modification of primary magmatic apatite during interaction with hydrothermal fluids. The similarities in Sr isotope ratios (87Sr/86Sr = 0.7032–0.7043) but slight differences in O isotope signatures (δ18O = 6.0 ± 0.3‰ vs. 6.6 ± 0.3‰) in apatite from fresh and altered rocks are consistent with the magma and hydrothermal fluids having the same source and suggest significant phase separation in the hydrothermal fluids given that 18O preferentially fractionates into the residual liquid relative to 16O during phase separation. The similarity of immobile element (REE, Y, U, Th, and Zr) contents in both populations of apatite, consistency of textures and Nd isotope compositions, and absence of obvious dissolution-reprecipitation features all suggest that altered apatite retains some magmatic characteristics. The apatite in fresh rocks has oxygen isotope compositions similar to that of zircons from the same sample (δ18O = 5.9 ± 0.3‰), indicating little to no oxygen isotope fractionation between zircon and apatite and that apatite can be a good proxy for the oxygen isotope composition of the magma. Based on the Cl contents of the magmatic and replacement apatite, and assuming their equilibrium with high-temperature magma fluid and replacement hydrothermal fluid, respectively, the calculated Cl content of the early magmatic fluid and the later replacement fluid can be estimated to be 6.4 to 15.1 wt % and ~0.25 ± 0.03 wt %, respectively. This indicates a depletion of Cl from the early high-temperature fluid to the replacement fluid, consistent with phase separation. This study demonstrates that cathodoluminescence, elemental compositions (such as Cl, Mn, Mg, Fe, Sr, Pb) and Sr-O isotope signatures in apatite can be modified during hydrothermal alteration, whereas other components (REE, Y, U, Th, and Zr) and the Nd isotope composition are preserved. These features can be used to constrain the origin, chemistry, and evolution of the primary magma and ore-forming hydrothermal fluids.


2020 ◽  
Author(s):  
Desiree Roerdink ◽  
Yuval Ronen ◽  
Harald Strauss ◽  
Paul Mason

Abstract Reconstructing the emergence and weathering of continental crust in the Archean is crucial for our understanding of early ocean chemistry, biosphere evolution and the onset of plate tectonics. However, considerable disagreement exists between the elemental and isotopic proxies that have been used to trace crustal input into marine sediments and data are scarce prior to 3 billion years ago. Here we show that chemical weathering modified the Sr isotopic composition of seawater as recorded in 3.52-3.20 Ga stratiform barite deposits from three different cratons. Using a combination of Sr, S and O isotope data, barite petrography and a hydrothermal mixing model, we calculate a novel Sr isotope evolution trend for Paleoarchean seawater that is much more radiogenic than the curve previously determined from carbonate rocks. Our findings require the presence and weathering of subaerial and evolved (high Rb/Sr) crust from 3.7 ± 0.1 Ga onwards. This Eoarchean onset of crustal weathering affected the chemistry of the oceans and supplied nutrients to the marine biosphere 500 million years earlier than previously thought.


Sign in / Sign up

Export Citation Format

Share Document