scholarly journals Iron and Carbon Isotope Constraints on the Formation Pathway of Iron-Rich Carbonates within the Dagushan Iron Formation, North China Craton

Minerals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 94
Author(s):  
Xiaoxue Tong ◽  
Kaarel Mänd ◽  
Yuhao Li ◽  
Lianchang Zhang ◽  
Zidong Peng ◽  
...  

Banded iron formations (BIFs) are enigmatic chemical sedimentary rocks that chronicle the geochemical and microbial cycling of iron and carbon in the Precambrian. However, the formation pathways of Fe carbonate, namely siderite, remain disputed. Here, we provide photomicrographs, Fe, C and O isotope of siderite, and organic C isotope of the whole rock from the ~2.52 Ga Dagushan BIF in the Anshan area, China, to discuss the origin of siderite. There are small magnetite grains that occur as inclusions within siderite, suggesting a diagenetic origin of the siderite. Moreover, the siderites have a wide range of iron isotope compositions (δ56FeSd) from −0.180‰ to +0.463‰, and a relatively negative C isotope composition (δ13CSd = −6.20‰ to −1.57‰). These results are compatible with the reduction of an Fe(III)-oxyhydroxide precursor to dissolved Fe(II) through microbial dissimilatory iron reduction (DIR) during early diagenesis. Partial reduction of the precursor and possible mixing with seawater Fe(II) could explain the presence of siderite with negative δ56Fe, while sustained reaction of residual Fe(III)-oxyhydroxide could have produced siderite with positive δ56Fe values. Bicarbonate derived from both DIR and seawater may have provided a C source for siderite formation. Our results suggest that microbial respiration played an important role in the formation of siderite in the late Archean Dagushan BIF.

2015 ◽  
Vol 112 (27) ◽  
pp. 8193-8198 ◽  
Author(s):  
Weiqiang Li ◽  
Brian L. Beard ◽  
Clark M. Johnson

Banded iron formations (BIFs) record a time of extensive Fe deposition in the Precambrian oceans, but the sources and pathways for metals in BIFs remain controversial. Here, we present Fe- and Nd-isotope data that indicate two sources of Fe for the large BIF units deposited 2.5 billion y ago. High-εNd and -δ56Fe signatures in some BIF samples record a hydrothermal component, but correlated decreases in εNd- and δ56Fe values reflect contributions from a continental component. The continental Fe source is best explained by Fe mobilization on the continental margin by microbial dissimilatory iron reduction (DIR) and confirms for the first time, to our knowledge, a microbially driven Fe shuttle for the largest BIFs on Earth. Detailed sampling at various scales shows that the proportions of hydrothermal and continental Fe sources were invariant over periods of 100–103 y, indicating that there was no seasonal control, although Fe sources varied on longer timescales of 105–106 y, suggesting a control by marine basin circulation. These results show that Fe sources and pathways for BIFs reflect the interplay between abiologic (hydrothermal) and biologic processes, where the latter reflects DIR that operated on a basin-wide scale in the Archean.


1993 ◽  
Vol 30 (8) ◽  
pp. 1566-1581 ◽  
Author(s):  
R. Craig Ford ◽  
Norman A. Duke

Gold-bearing iron formations are widely distributed within extensive metasedimentary terranes of the Archean Slave Province, situated in the northwestern Canadian Precambrian Shield. Mineralized iron formations occur within thick turbidite sequences overprinted by a protracted history of deformation, metamorphism, and plutonism. Economically significant gold prospects are specifically sited at structural culminations characterized by polyphase folding. Based on garnet–biotite geothermometry on the stable prograde metamorphic assemblage of enveloping metapelites, peak metamorphic conditions are approximated to be 570 °C and 4 kbar (1 kbar = 100 MPa). Diagnostic prograde mineralogy reveals that two facies of silicate iron formation are represented at the five gold occurrences investigated: (1) amphibolitic iron formation (AIF), characterized by quartz + grunerite + hornblende + pyrrhotite ± garnet ± graphite + ilmenite, and (2) pelitic iron formation (PIF), consisting of quartz + biotite + garnet + ilmenite ± grunerite ± hornblende. Textures reveal that grunerite crystallization preceded hornblende and garnet. Within AIF, banded pyrrhotite is in textural equilibrium with prograde metamorphic minerals. Retrograde hornblende, garnet, zoisite, apatite, carbonate, ferroactinolite, and gold-bearing sulphide minerals replace the prograde mineral assemblages on the margins of quartz veins that intensify at AIF fold hinges.It is hypothesized that the iron-formation-hosted gold deposits of the Slave Province are a result of multistage processes. Gold concentrated at high background levels within pyrrhotite-bearing AIF was remobilized during fluid migration into brittle AIF fold hinges in subsequent metamorphic and deformational events. Metamorphic fluid, ponded in fractured AIF hinge domains, caused retrogressive replacement, quartz veining, and gold-bearing sulphide precipitation during waning temperature. Although the mineralized hinge zones commonly display evidence of late chloritization, this alteration did not further affect gold distribution. The gold precipitated with destabilization of thio complexes due to sulphidation prior to low-temperature hydrothermal activity.


2019 ◽  
Vol 5 (11) ◽  
pp. eaav2869 ◽  
Author(s):  
Katharine J. Thompson ◽  
Paul A. Kenward ◽  
Kohen W. Bauer ◽  
Tyler Warchola ◽  
Tina Gauger ◽  
...  

Banded iron formation (BIF) deposition was the likely result of oxidation of ferrous iron in seawater by either oxygenic photosynthesis or iron-dependent anoxygenic photosynthesis—photoferrotrophy. BIF deposition, however, remains enigmatic because the photosynthetic biomass produced during iron oxidation is conspicuously absent from BIFs. We have addressed this enigma through experiments with photosynthetic bacteria and modeling of biogeochemical cycling in the Archean oceans. Our experiments reveal that, in the presence of silica, photoferrotroph cell surfaces repel iron (oxyhydr)oxides. In silica-rich Precambrian seawater, this repulsion would separate biomass from ferric iron and would lead to large-scale deposition of BIFs lean in organic matter. Excess biomass not deposited with BIF would have deposited in coastal sediments, formed organic-rich shales, and fueled microbial methanogenesis. As a result, the deposition of BIFs by photoferrotrophs would have contributed fluxes of methane to the atmosphere and thus helped to stabilize Earth’s climate under a dim early Sun.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Matthew S. Dodd ◽  
Dominic Papineau ◽  
Franco Pirajno ◽  
Yusheng Wan ◽  
Juha A. Karhu

Abstract The cycling of iron and organic matter (OM) is thought to have been a major biogeochemical cycle in the early ferruginous oceans which contributed to the deposition of banded iron formations (BIF). However, BIF are deficient in OM, which is postulated to be the result of near-complete oxidation of OM during iron reduction. We test this idea by documenting the prevalence of OM in clays within BIF and clays in shales associated with BIF. We find in shales >80% of OM occurs in clays, but <1% occurs in clays within BIF. Instead, in BIF OM occurs with 13C-depleted carbonate and apatite, implying OM oxidation occurred. Conversely, BIF which possess primary clays would be expected to preserve OM in clays, yet this is not seen. This implies OM deposition in silicate-bearing BIF would have been minimal, this consequently stifled iron-cycling and primary productivity through the retention of nutrients in the sediments.


2005 ◽  
Vol 32 (1) ◽  
pp. 51
Author(s):  
FLÁVIO FRANÇA NUNES DA ROCHA ◽  
ARTUR CEZAR BASTOS NETO ◽  
MARCUS VINÍCIUS DORNELLES REMUS ◽  
VITOR PAULO PEREIRA

The source of the ore elements in the Schramm gold mine, localized in central part of Santa Catarina shield, has been constrained based on lead isotope composition of galena and sulfosalts, and the rare earth element (REE) patterns of the ore. The Pb207/ Pb206 model age obtained in galena and lillianite-gustavite series from the mineralization yields an age of 1.88 Ga. It is higher than the estimated age of the deposit (» 534 Ma). The Pb isotopic composition obtained in these minerals indicates that the age of Schramm mine source is similar to that of the galena of the Ribeirão da Prata mine (Pb-Zn-Cu-Ag). This mine is located 25 Km southwest of the Schramm gold mine witch is hosted in the tension fracture zone conjugated with the first order shear zone that contains the Ribeirão da Prata deposit. The similarities between Pb-isotope compositions of both deposits could indicate that they were contemporaneous and derived from the same regional lead source. The REE patterns of the ore samples of Schramm mine are similar to that of the pyroxenites and banded iron formations from the Archean Santa Catarina Granulitic Complex that host the Schramm gold mine. They present low REE contents with flat patterns and lack Eu anomalies. The comparison among the isotopic data from this mine with those from other places indicates that the banded iron formation and mafic-ultramafic granulitic gneisses are the source of the gold mineralization. This evidence agreed with the hypothesis that the ore fluids were derived from retrogressive metamorphism reactions of Santa Catarina Granulitic Complex in the shear zones during the final stage of Brasiliano orogenic cycle.


2020 ◽  
Author(s):  
Gabriella Fazio ◽  
Elder Yokoyama ◽  
Lucieth Cruz ◽  
Guilherme Trigilio

&lt;p&gt;The iron biogeochemical cycle is redox-sensitive and, therefore, can be linked to the major variations on the atmospheric and ocean compositions over the Earth&amp;#8217;s evolution. Regarding the two main increases in the oxygen levels during the Precambrian, the Great and the Neoproterozoic Oxidation Events, both are related to paleogeographic, paleoenvironmetal and biochemical changes, linked also to global glaciations. These paleoclimatic variations caused disturbances in the iron cycle, which reacted by depositing paleoclimatic archives as banded iron formations (BIF). Investigations on the iron cycle can shed a light on the responses of the ocean redox state and the iron reservoir through these atmospheric variations. Thus, the analyses of the iron isotopic composition in the BIFs are a fundamental tool for these studies. It is essential to considerate the associated isotopic fractionation processes and uncertainties during the interpretation of these data. To this extend, many authors address the possibility of the impact of post-depositional processes in the primary signature of iron isotopic values, such as diagenesis, metamorphism and weathering. In all these scenarios and along the depositional process, the metabolic activity of planktonic bacteria must be considered as an active mechanism of isotopic fractioning. Therefore, the biologic enrolment in Fe (II) oxidation in a poor-O&lt;sub&gt;2&lt;/sub&gt; atmosphere environment can help the understanding of BIF genesis during the major paleoclimatic events and its connection to life evolutionary leaps. In this study, we have performed a statistic evaluation of a bulk iron isotopic compilation from BIFs of different localities through the Precambrian, highlighting the Archean, the Paleoproterozoic and the Neoproterozoic. This evaluation was applied to ensure an iron isotopic anomaly, pointing towards an intense fractionation, found in the Neoproterozoic BIF of Banda Alta Formation (Jacadigo Group), located at Urucum district, West Brazil, bordering Bolivia. This formation is mainly composed of banded iron formations, interbedded with manganese facies, granular iron formation, diamictite and pelitic siliciclastic units. Its age constrains is in current debate, often linked to the Marinoan glaciation, whereas a recent biostratigraphic study indicates connection to the Sturtian glaciation. One of the main goals of this research is the evaluation of the uncertainty of primary isotopic signature regarding the impacts of post-depositional processes. To this extent, we have performed a detailed diagenetic characterization using clay mineralogy on stratigraphic cores establishing the diagenetic-low metamorphic stage in which these BIFs where submitted to. Moreover, in order to interpret the iron isotopic anomalous values, this research aimed the recognition of biogenic contribution in the BIF genesis. For this purpose, magnetic measures, such as low temperature magnetic measurements and standard bulk rock magnetism analyses, were performed to understand the minerology of the iron oxide phases and their genesis, in particular the attempt to identify biogenic magnetite proxies. In conclusion, a multiproxy approach was used targeting the understanding of the observed iron isotopic anomaly in the BIF of Urucum district.&lt;/p&gt;


Author(s):  
Mohamed Samuel Moriah Conté ◽  
Abdellah Boushaba ◽  
Ali Moukadiri

The Nimba Range and its western extension are located in the Nimba region on the borders of the Republic of Guinea, Liberia and Côte d'Ivoire. It is a mountainous region made up of metavolcanic and metasedimentary rocks. Metavolcanic rocks are gneisses, granites, amphibolites and quartzites, which constitute the lower part of Archean age. The upper part consists of Proterozoic rocks of metasedimentary origin. It contains important deposits of itabirites which occupy the top of the mountains and hills of the region. The petrographic study of the banded iron formations reveals the existence of silicate banded iron formations (SIF) and oxidized banded iron formations (OIF). The results of the scanning electron microscope (SEM) and metallogenic analyzes show the presence of iron minerals (magnetites, hematites, pyrites, goethites, martites and siderites). These analyzes also reveal the presence of the metamorphic index minerals associated with the banded iron formations, hence the existence of several types of ferriferous formations (silicate (SIF) and oxidized (OIF) banded iron formations). Overall, there is an increase in the degree of regional metamorphism from east to west of the Nimba region. The geochemical analysis of the banded iron formations reveals that with the exception of Na2O, all the major elements have a negative linear correlation although dispersed with Fe2O3. This correlation is explained by a decrease in quartz, garnet, micas (muscovite and biotite), amphibole, pyroxene, plagioclase, titanium and phosphorus contents. Conversely, there is an increase in iron ore content: magnetites, pyrites, hematites, goethite. But the alkali content remains constant in these banded iron formations. Then, the lower the Fe2O3content, the higher the FeO content, while those of SiO2and Al2O3are constant in all of these formations in the Nimba region except in the chlorite banded iron formation where both are anticorelated. Finally, the ratio SiO2/ Fe2O3vs MgO + CaO + MnO / Fe2O3of the banded iron formations of the Nimba region compared to the same formations of the whole world allows to give them Proterozoic age. Some itabirites have high levels of magnetite, hematite, and goethite (same feature as itabirites of Lac supérieur and Pic de fon) and only chlorite itabirite has a low to medium Mg-Si-BIF content.


Sign in / Sign up

Export Citation Format

Share Document