scholarly journals Fluorescent copper(II) complexes: The electron transfer mechanism, interaction with bovine serum albumin (BSA) and antibacterial activity

2017 ◽  
Vol 21 ◽  
pp. S240-S247 ◽  
Author(s):  
Madhumita Hazra ◽  
Tanushree Dolai ◽  
Akhil Pandey ◽  
Subrata Kumar Dey ◽  
Animesh Patra
2016 ◽  
Vol 4 (25) ◽  
pp. 4430-4438 ◽  
Author(s):  
Jin-Tao Wang ◽  
Yanhang Hong ◽  
Xiaotian Ji ◽  
Mingming Zhang ◽  
Li Liu ◽  
...  

Poly(2-hydroxyethyl methacrylate)–bovine serum albumin core–corona particles were prepared using in situ activators generated by electron transfer for atom transfer radical polymerizations of HEMA initiated by a BSA macroinitiator.


RSC Advances ◽  
2018 ◽  
Vol 8 (60) ◽  
pp. 34252-34258 ◽  
Author(s):  
Cláudio Lourenço ◽  
Thomas J. Macdonald ◽  
Asterios Gavriilidis ◽  
Elaine Allan ◽  
Alexander J. MacRobert ◽  
...  

In this work we demonstrate that our active surfaces still show antibacterial activity even with BSA at low light.


2020 ◽  
Vol 240 ◽  
pp. 122115 ◽  
Author(s):  
Anupama R. Prasad ◽  
Sabeel M. Basheer ◽  
Induja R. Gupta ◽  
K.K. Elyas ◽  
Abraham Joseph

Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3554 ◽  
Author(s):  
Yao-Te Yen ◽  
Ting-Yueh Chen ◽  
Chun-Yu Chen ◽  
Chi-Lun Chang ◽  
San-Chong Chyueh ◽  
...  

Screening of illicit drugs for new psychoactive substances—namely cathinone—at crime scenes is in high demand. A dual-emission bovine serum albumin-stabilized gold nanoclusters probe was synthesized and used for quantitation and screening of 4-chloromethcathinone and cathinone analogues in an aqueous solution. The photoluminescent (PL) color of the bovine serum albumin-stabilized Au nanoclusters (BSA-Au NCs) probe solution changed from red to dark blue during the identification of cathinone drugs when excited using a portable ultraviolet light-emitting diodes lamp (365 nm). This probe solution allows the PL color-changing point and limit of detection down to 10.0 and 0.14 mM, respectively, for 4-chloromethcathinone. The phenomenon of PL color-changing of BSA-Au NCs was attributed to its PL band at 650 nm, quenching through an electron transfer mechanism. The probe solution was highly specific to cathinone drugs, over other popular illicit drugs, including heroin, cocaine, ketamine, and methamphetamine. The practicality of this BSA-Au NCs probe was assessed by using it to screen illicit drugs seized by law enforcement officers. All 20 actual cases from street and smuggling samples were validated using this BSA-Au NCs probe solution and then confirmed using gas chromatography–mass spectrometry. The results reveal this BSA-Au NCs probe solution is practical for screening cathinone drugs at crime scenes.


2013 ◽  
Vol 17 (01n02) ◽  
pp. 56-62 ◽  
Author(s):  
Kazutaka Hirakawa ◽  
Keito Azumi ◽  
Yoshinobu Nishimura ◽  
Tatsuo Arai ◽  
Yoshio Nosaka ◽  
...  

The effect of the axial ligand fluorination of the water-soluble P(V)porphyrin complex on photosensitized protein damage was examined. The activity of singlet oxygen generation by diethoxyP(V) porphyrin was slightly improved by the fluorination of the ethoxy chains. Absorption spectrum measurements demonstrated the binding interaction between the P(V)porphyrins and human serum albumin, a water-soluble protein. Photo-irradiated P(V)porphyrins damaged the amino acid residue of human serum albumin, resulting in the decrease of the fluorescence intensity from the tryptophan residue of human serum albumin. A singlet oxygen quencher, sodium azide, could not completely inhibit the damage of human serum albumin, suggesting that the electron transfer mechanism contributes to protein damage as does singlet oxygen generation. The decrease of the fluorescence lifetime of P(V)porphyrin by human serum albumin supported the electron transfer mechanism. The estimated contributions of the electron transfer mechanism are 0.57 and 0.44 for the fluorinated and non-fluorinated P(V)porphyrins, respectively. The total quantum yield of the protein photo-oxidation was slightly enhanced by this axial fluorination.


Sign in / Sign up

Export Citation Format

Share Document