Seismic and GPS evidence for the kinematics and the state of stress of active structures in south and south-central Tibetan Plateau

2007 ◽  
Vol 29 (2-3) ◽  
pp. 283-295 ◽  
Author(s):  
Xuemin Zhang ◽  
Yu Wang
2020 ◽  
Vol 248 ◽  
pp. 106475
Author(s):  
Tara N. Jonell ◽  
Jonathan C. Aitchison ◽  
Guoqiang Li ◽  
James Shulmeister ◽  
Renjie Zhou ◽  
...  

2020 ◽  
Author(s):  
Eryuan Liang ◽  
Xiaoming Lu ◽  
Yafeng Wang ◽  
Flurin Babst ◽  
Steven W. Leavitt ◽  
...  

<p>Alpine biomes are climate change hotspots, and treeline dynamics in particular have received much attention as visible evidence of climate-induced shifts in species distributions. Comparatively little is known, however, about the effects of climate change on alpine shrubline dynamics. Here, we reconstruct decadally resolved shrub recruitment history (age structure) through the combination of field surveys and dendroecology methods at the world’s highest juniper (Juniperus pingii var. wilsonii) shrublines on the south-central Tibetan Plateau. A total of 1,899 shrubs were surveyed at 12 plots located in four regions along an east-to-west declining precipitation gradient. We detected synchronous recruitment with 9 out of 12 plots showing a gradual increase from 1600 to 1900, a peak at 1900–1940, and a subsequent decrease from the 1930s onward. Shrub recruitment was significantly and positively correlated with reconstructed summer temperature from 1600 to 1940, whereas it was negatively associated with temperature in recent decades (1930–2000). Recruitment was also positively correlated with precipitation, except in the 1780–1830 period, when a trend toward wetter climate conditions began. This apparent tipping point in recruitment success coincides with a switch from positive to negative impacts of rising temperatures.  Warming-induced drought limitation has likely reduced the recruitment potential of alpine juniper shrubs in recent decades. Continued warming is thus expected to further alter the dynamics of alpine shrublines on the Tibetan Plateau and elsewhere.</p>


The Holocene ◽  
2012 ◽  
Vol 23 (1) ◽  
pp. 36-45 ◽  
Author(s):  
Minhui He ◽  
Bao Yang ◽  
Achim Bräuning ◽  
Jianglin Wang ◽  
Zhangyong Wang

Knowledge of Asian monsoon variability remains limited because of sparse instrumental data available only for short time series. Here, an updated tree-ring width record covering the period ad 1037–2009 was developed for the south-central Tibetan Plateau (TP). Correlation analysis revealed a significant relationship ( r = 0.71) between the tree-ring index and annual (previous July to current June) precipitation series for the instrumental period 1963–2008, which accounts for 50.41% of the rainfall variability. Based on a linear regression model, the longest available regional precipitation history was reconstructed. Spatial correlation between tree ring width and annual precipitation data from previous July to current June indicates that the reconstruction is representative of precipitation changes on the south-central TP. Regional wet conditions occurred during ad 1095–1161, 1376–1403, 1414–1446, 1518–1537, 1549–1572, 1702–1757, 1848–1878 and 1891–1913, while dry periods were identified during ad1189–1242, 1256–1314, 1329–1357, 1470–1491, 1573–1623, 1636–1686, 1761–1821, 1823–1847, 1879–1890 and 1931–1985. The negative correlation between our reconstructed precipitation and India monsoon rainfall series indicates the seesaw pattern over northern and southern monsoon Asia. It is suggested that solar radiation-induced sea surface temperature (SST) anomalies over the tropical Pacific influence regional rainfall patterns. The degree of this influence has been stable at the multidecadal scale during the past 1000 years.


2020 ◽  
Vol 47 (12) ◽  
Author(s):  
Xiaoming Lu ◽  
Ru Huang ◽  
Yafeng Wang ◽  
Baoqing Zhang ◽  
Haifeng Zhu ◽  
...  

2016 ◽  
Vol 27 (3) ◽  
pp. 337-347 ◽  
Author(s):  
Yanhong Wu ◽  
Xin Zhang ◽  
Hongxing Zheng ◽  
Junsheng Li ◽  
Zhiying Wang

Sign in / Sign up

Export Citation Format

Share Document