Research of the Conductive Structure of Crust and the Upper Mantle beneath the South-Central Tibetan Plateau

2007 ◽  
Vol 18 (4) ◽  
pp. 334-343 ◽  
Author(s):  
Y GAOFENG ◽  
J SHENG ◽  
W WENBO ◽  
M UNSWORTH
2020 ◽  
Vol 248 ◽  
pp. 106475
Author(s):  
Tara N. Jonell ◽  
Jonathan C. Aitchison ◽  
Guoqiang Li ◽  
James Shulmeister ◽  
Renjie Zhou ◽  
...  

The Holocene ◽  
2012 ◽  
Vol 23 (1) ◽  
pp. 36-45 ◽  
Author(s):  
Minhui He ◽  
Bao Yang ◽  
Achim Bräuning ◽  
Jianglin Wang ◽  
Zhangyong Wang

Knowledge of Asian monsoon variability remains limited because of sparse instrumental data available only for short time series. Here, an updated tree-ring width record covering the period ad 1037–2009 was developed for the south-central Tibetan Plateau (TP). Correlation analysis revealed a significant relationship ( r = 0.71) between the tree-ring index and annual (previous July to current June) precipitation series for the instrumental period 1963–2008, which accounts for 50.41% of the rainfall variability. Based on a linear regression model, the longest available regional precipitation history was reconstructed. Spatial correlation between tree ring width and annual precipitation data from previous July to current June indicates that the reconstruction is representative of precipitation changes on the south-central TP. Regional wet conditions occurred during ad 1095–1161, 1376–1403, 1414–1446, 1518–1537, 1549–1572, 1702–1757, 1848–1878 and 1891–1913, while dry periods were identified during ad1189–1242, 1256–1314, 1329–1357, 1470–1491, 1573–1623, 1636–1686, 1761–1821, 1823–1847, 1879–1890 and 1931–1985. The negative correlation between our reconstructed precipitation and India monsoon rainfall series indicates the seesaw pattern over northern and southern monsoon Asia. It is suggested that solar radiation-induced sea surface temperature (SST) anomalies over the tropical Pacific influence regional rainfall patterns. The degree of this influence has been stable at the multidecadal scale during the past 1000 years.


2020 ◽  
Vol 47 (12) ◽  
Author(s):  
Xiaoming Lu ◽  
Ru Huang ◽  
Yafeng Wang ◽  
Baoqing Zhang ◽  
Haifeng Zhu ◽  
...  

2016 ◽  
Vol 27 (3) ◽  
pp. 337-347 ◽  
Author(s):  
Yanhong Wu ◽  
Xin Zhang ◽  
Hongxing Zheng ◽  
Junsheng Li ◽  
Zhiying Wang

2018 ◽  
Vol 47 ◽  
pp. 48-57 ◽  
Author(s):  
Minhui He ◽  
Achim Bräuning ◽  
Jussi Grießinger ◽  
Philipp Hochreuther ◽  
Jakob Wernicke

The Holocene ◽  
2016 ◽  
Vol 27 (4) ◽  
pp. 594-604 ◽  
Author(s):  
Feng Chen ◽  
Jin-Liang Feng ◽  
Hai-Ping Hu ◽  
Ji-Feng Zhang ◽  
Shao-Peng Gao ◽  
...  

The timing of lake-level fluctuations on the Tibetan Plateau and their relationship with climatic changes is still under debate, and the main reason for this is the lack of suitable archives for reconstructing the paleohydrology and paleoclimatology of the lakes. Here, we present the results of analyses of the shell geochemistry of Radix sp. from an exposed terrace of Nam Co lake on the south-central Tibetan Plateau. Optically stimulated luminescence (OSL) dating reveals that deep-water lacustrine sediments formed between ca. 4.4 and 2.2 ka, suggesting a high and stable lake level significantly above the present. The results of Sr/Ca, δ13C and δ18O analyses of the fossil shells of Radix sp. indicate that during the mid- to late-Holocene, lake-level variations in Nam Co were mainly controlled by variations in the Indian Summer Monsoon. A trend of decreasing evaporation also played an important role. Comparison with other results suggests a consistent pattern of mid- to late-Holocene lake-level changes across a large area of the Tibetan Plateau and adjacent regions to the south, which had a similar causal mechanism. Finally, our results indicate that fossil shells of the gastropod Radix sp. of the lakes on the Tibetan Plateau are a valuable archive for reconstructing the regional paleohydrology and paleoclimatology.


Sign in / Sign up

Export Citation Format

Share Document