Paleomagnetism and microtextures reveal Neohimalayan deformation pattern in the northwestern Tethys Himalaya

2020 ◽  
Vol 202 ◽  
pp. 104516
Author(s):  
Shuai Li ◽  
Yalin Li ◽  
Xiaodong Tan ◽  
Jun Meng ◽  
Yongmei Shang ◽  
...  
Author(s):  
Ilias Lazos ◽  
Sotirios Sboras ◽  
Christos Pikridas ◽  
Spyros Pavlides ◽  
Alexandros Chatzipetros

2019 ◽  
Vol 9 (14) ◽  
pp. 2920
Author(s):  
Lorena Salazar-Llano ◽  
Camilo Bayona-Roa

One challenging problem is the representation of three-dimensional datasets that vary with time. These datasets can be thought of as a cloud of points that gradually deforms. However, point-wise variations lack information about the overall deformation pattern, and, more importantly, about the extreme deformation locations inside the cloud. This present article applies a technique in computational mechanics to derive the strain-rate state of a time-dependent and three-dimensional data distribution, by which one can characterize its main trends of shift. Indeed, the tensorial analysis methodology is able to determine the global deformation rates in the entire dataset. With the use of this technique, one can characterize the significant fluctuations in a reduced multivariate description of an urban system and identify the possible causes of those changes: calculating the strain-rate state of a PCA-based multivariate description of an urban system, we are able to describe the clustering and divergence patterns between the districts of a city and to characterize the temporal rate in which those variations happen.


Author(s):  
Vivek K. Himanshu ◽  
A.K. Mishra ◽  
M.P. Roy ◽  
Ashish K. Vishwakarma ◽  
P.K. Singh

2020 ◽  
Vol 10 (1) ◽  
pp. 136-144
Author(s):  
P.K. Gautam ◽  
S. Rajesh ◽  
N. Kumar ◽  
C.P. Dabral

Abstract We investigate the surface deformation pattern of GPS station at MPGO Ghuttu (GHUT) to find out the cause of anomalous behavior in the continuous GPS time series. Seven years (2007-2013) of GPS data has been analyzed using GAMIT/GLOBK software and generated the daily position time series. The horizontal translational motion at GHUT is 43.7 ± 1 mm/yr at an angle of 41°± 3° towards NE, while for the IGS station at LHAZ, the motion is 49.4 ±1 mm/yr at 18 ± 2.5° towards NEE. The estimated velocity at GHUT station with respect to IISC is 12 ± 1 mm/yr towards SW. Besides, we have also examined anomalous changes in the time series of GHUT before, after and during the occurrences of local earthquakes by considering the empirical strain radius; such that, a possible relationship between the strain radius and the occurrences of earthquakes have been explored. We considered seven local earthquakes on the basis of Dobrovolsky strain radius condition having magnitude from 4.5 to 5.7, which occurred from 2007 to 2011. Results show irrespective of the station strain radius, pre-seismic surface deformational anomalies are observed roughly 70 to 80 days before the occurrence of a Moderate or higher magnitude events. This has been observed for the cases of those events originated from the Uttarakashi and the Chamoli seismic zones in the Garhwal and Kumaun Himalaya. Occurrences of short (< 100 days) and long (two years) inter-seismic events in the Garhwal region plausibly regulating and diffusing the regional strain accumulation.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Kunlin Cao ◽  
Kai Ding ◽  
Joseph M. Reinhardt ◽  
Gary E. Christensen

Accurate pulmonary image registration is a challenging problem when the lungs have a deformation with large distance. In this work, we present a nonrigid volumetric registration algorithm to track lung motion between a pair of intrasubject CT images acquired at different inflation levels and introduce a new vesselness similarity cost that improves intensity-only registration. Volumetric CT datasets from six human subjects were used in this study. The performance of four intensity-only registration algorithms was compared with and without adding the vesselness similarity cost function. Matching accuracy was evaluated using landmarks, vessel tree, and fissure planes. The Jacobian determinant of the transformation was used to reveal the deformation pattern of local parenchymal tissue. The average matching error for intensity-only registration methods was on the order of 1 mm at landmarks and 1.5 mm on fissure planes. After adding the vesselness preserving cost function, the landmark and fissure positioning errors decreased approximately by 25% and 30%, respectively. The vesselness cost function effectively helped improve the registration accuracy in regions near thoracic cage and near the diaphragm for all the intensity-only registration algorithms tested and also helped produce more consistent and more reliable patterns of regional tissue deformation.


2014 ◽  
Vol 898 ◽  
pp. 7-10 ◽  
Author(s):  
Zi Qiang Wang ◽  
Jun Ying Cao

In this paper, we give a second-order two-scale (SOTS) computational method for composite plate with 3-D periodic configuration under condition of coupled thermoelasticity by means of construction way. Based on the Reissner-Mindlin deformation pattern and integral projection operator of temperature, the homogenization solution is obtained. The SOTS's approximate solution is constructed by the cell functions and the homogenization solution. A set of numerical results are demonstrated for predicting the effective parameters, the displacement and temperature of composite plate. It shows that SOTS's method can capture the 3-D local behaviors caused by 3-D micro-structures well.


2014 ◽  
Vol 5 ◽  
pp. 9-14 ◽  
Author(s):  
Olivier Huttin ◽  
Clément Venner ◽  
Zied Frikha ◽  
Damien Voilliot ◽  
Pierre-Yves Marie ◽  
...  

2021 ◽  
Author(s):  
Andre C. Kalia

&lt;p&gt;Landslide activity is an important information for landslide hazard assessment. However, an information gap regarding up to date landslide activity is often present. Advanced differential interferometric SAR processing techniques (A-DInSAR), e.g. Persistent Scatterer Interferometry (PSI) and Small Baseline Subset (SBAS) are able to measure surface displacements with high precision, large spatial coverage and high spatial sampling density. Although the huge amount of measurement points is clearly an improvement, the practical usage is mainly based on visual interpretation. This is time-consuming, subjective and error prone due to e.g. outliers. The motivation of this work is to increase the automatization with respect to the information extraction regarding landslide activity.&lt;/p&gt;&lt;p&gt;This study focuses on the spatial density of multiple PSI/SBAS results and a post-processing workflow to semi-automatically detect active landslides. The proposed detection of active landslides is based on the detection of Active Deformation Areas (ADA) and a subsequent classification of the time series. The detection of ADA consists of a filtering of the A-DInSAR data, a velocity threshold and a spatial clustering algorithm (Barra et al., 2017). The classification of the A-DInSAR time series uses a conditional sequence of statistical tests to classify the time series into a-priori defined deformation patterns (Berti et al., 2013). Field investigations and thematic data verify the plausibility of the results. Subsequently the classification results are combined to provide a layer consisting of ADA including information regarding the deformation pattern through time.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document