scholarly journals Utilizing mixer torque rheometer in the prediction of optimal wet massing parameters for pellet formulation by extrusion/spheronization

2019 ◽  
Vol 27 (2) ◽  
pp. 182-190 ◽  
Author(s):  
Mohamed A. Ibrahim ◽  
Gamal M. Zayed ◽  
Fahd M. Alsharif ◽  
Wael A. Abdelhafez
2018 ◽  
Vol 10 (1) ◽  
pp. 30
Author(s):  
Shelar Vishwas S. ◽  
Shirolkar Satish V. ◽  
Kale Rupali N.

Objective: Promethazine theoclate is a BCS Class II drug having anti-histaminic property and mainly used for the treatment of motion sickness and postoperative emesis. The main objective of the research work was to formulate and optimize immediate release pellets of promethazine theoclate by using the extrusion-spheronization technique to offer immediate release dosage form suitable for treatment of nausea and vomiting associated with motion sickness and post-operative conditions.Methods: Immediate release pellets of promethazine theoclate were prepared by using microcrystalline cellulose (MCC) and corn starch as filler and disintegrant respectively along with other excipients. Pellet formulation was further optimized for bulk density, disintegration time and percent drug release after 10 min. using 32 factorial design. Formulations were also characterized for drug-polymer interactions using Differential Scanning Calorimetry (DSC), surface morphology by Scanning Electron Microscopy (SEM) and other physicochemical properties.Results: Optimised pellet formulation contains 2.5:4.5:1 ratio of MCC: Corn Starch: Drug and spheronization time of 60 seconds showing highest percent yield of 78% and immediate drug release of 100.52±0.65% after 10 min.Conclusion: Promethazine theoclate pellets formulated in this study can serve as an alternative to tablet dosage form which can give immediate drug release for treatment of motion sickness and postoperative emesis.


2019 ◽  
Vol 14 (2) ◽  
pp. 168-182
Author(s):  
Hardik Rana ◽  
Vaishali Thakkar ◽  
Kalpana Mudgal ◽  
Mukesh Gohel ◽  
Lalji Baldania ◽  
...  

Objective: The prime objective was to formulate pellet formulation incorporating a newer extrusion- pelletisation aid, Pregelatinised Starch (PGS) and to scrutinise the factors that can affect the quality of the pellets and to overcome the slower disintegration of Microcrystaline Cellulose (MCC). Methods: Pellets were prepared initially using PGS, MCC, water, ethanol, HPMC K 4 M and Febuxostat was employed as model drug. Optimisation of formulation was done by employing Quality by design (QbD) and Design of experiment (DoE) approach. Ratio of PGS and MCC, ratio of binder and spheronisation speed were selected as independent variables and disintegration time and % cumulative drug release as dependent variables. In vitro in vivo correlation of the optimised batch was carried out using Wagner nelson method. Incompatibility studies have indicated compatibility of drug and excipients. Results: From the experiments, it was proved that the batch comprising 3:1 ratio of PGS and MCC, 1:1 binder solution and 1500 speed yielded good pellets with decreased disintegration time and improved dissolution rate as compared to pure Febuxostat. IVIVC studies indicated one to one correlation between in vitro and in vivo parameters. Conclusion: Pellets with good quality, minimum disintegration time and improved dissolution of model drug were successfully prepared with maximum amount of PGS. Optimisation using QbD approach was worth fruitful that affected the quality of pellets.


Author(s):  
Vivek Ranjan Sinha ◽  
M. K. Agrawal ◽  
A. Agarwal ◽  
Gurpreet Singh ◽  
D. Ghai

2020 ◽  
Vol 17 ◽  
Author(s):  
Bingwei Wang ◽  
Jianping Liu ◽  
Zhenghua Li ◽  
Yulong Xia ◽  
Shuangshuang Zhang ◽  
...  

Background: At present, there were numerous researches on the migration of components in tablets and granules, the investigation in the pharmaceutical literatrue concerning the effect of drying rate on the migration of water-soluble components of pellets was limited. Temperature and relative humidity (RH) were crucial parameters during the drying process which was an essential step in the preparation of pellets via wet extrusion/spheronization. To quantify these variables, the water loss percentage of pellets per minute was defined as drying rate. Objective: The study aimed to investigate the influence of drying rate on the migration of water-soluble components in wet pellets and the potential migrated mechanism. Methods: The pellets containing tartrazine as a water-soluble model drug and microcrystalline cellulose as a matrix former were prepared by extrusion/spheronization and dried at four different drying temperature and relative humidity. Afterward, the extent of migrated tartrazine was assessed regarding appearance, in-vitro dissolution test, Differential Scanning Calorimetry, X-Ray Powder Diffraction, Attenuated total reflectance Fourier transform infrared spectroscopy and Confocal Raman Mapping. Results: Results demonstrated that red spots of tartrazine appeared on the surface of pellets and more than 40% tartrazine were burst released within 5 minutes when pellets dried at 60℃/RH 10%. While pellets dried at 40℃/RH 80%, none of these aforementioned phenomena was observed. Conclusion: In conclusion, the faster drying rate was, the more tartrazine migrated to the exterior of pellets. Adjusting drying temperature and relative humidity appropriately could inhibit the migration of water-soluble components within wet extrusion/spheronization pellets.


2016 ◽  
Vol 10 (3) ◽  
pp. 192-206
Author(s):  
Hetal Patel ◽  
Kishan Patel ◽  
Sanjay Tiwari ◽  
Sonia Pandey ◽  
Shailesh Shah ◽  
...  

2019 ◽  
Vol 13 (2) ◽  
pp. 83-90 ◽  
Author(s):  
Hetal Patel ◽  
Mukesh Gohel

Enteric coated dosage form bypasses the stomach and releases the drug into the small intestine. Advantages of enteric coated pellets in comparison with enteric coated tablets are a) Pellets provide rapid onset of action and faster drug release due to the smaller size than tablets and b) Pellets exhibit less residence time of acid-labile drugs in the stomach compared to tablets. Dosage form coat can be damaged by longer resistance time in the stomach. The present review summarizes the current state of enteric coated pellets where core pellets are prepared by extrusion-spheronization technique and the enteric coating is applied in a fluidized bed processor. Two approaches are involved in the preparation of core pellets. In the first approach, a mixture of drug and excipient(s)/co-processed excipient is passed through extruders to prepare core pellets. In the second approach, excipient core pellets are prepared by extrusion technique and the drug is layered onto it before the enteric coating. The excipients present in the core pellets decide immediate or extended release of drug in the intestine. The coprocessed excipient pellets provide less batch variability and provide a platform for layering of many drugs before enteric coating. Some patents included enteric coating pellets [CN105456223 (A), CN105596310 (A), CN105616371 (A), CN105663095 (A), CN101611766B, CN106511862 (A), CN106668018 (A), CN106727381 (A), CN106924222 (A), TW200624127 (A), US 2017/0165248A1, US 2017/0224720A1] are discussed.


Author(s):  
REHANA BEGUM A. ◽  
GANESH N. S. ◽  
VINEETH CHANDY

This review article deals with the various pelletization techniques utilized in the pharmaceutical industry for spheroidal particle production i.e., pellet for mainly oral administration which can be further formulated into several other dosage forms such as tablets, capsules or can be administered as such. Now-a-days oral administration has become the most versatile, convenient and common route of drug administration which ultimately focuses on patient compliance. The technique which is setting horizon in pelletization is “Extrusion Spheronization” because of its simple and easy steps involved in pellet production in a faster way. This review also includes the characterization and evaluation of pellets to ensure its quality, safety and efficacy to give out the required therapeutic activity after administration.


Sign in / Sign up

Export Citation Format

Share Document