scholarly journals SAR-CoV-2 infection, emerging new variants and the role of activation induced cytidine deaminase (AID) in lasting immunity

Author(s):  
Asad Ullah ◽  
Neelam Mabood ◽  
Muhammad Maqbool ◽  
Luqman Khan ◽  
Maria Khan ◽  
...  
Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 990-990 ◽  
Author(s):  
Alexander L. Kovalchuk ◽  
Elizabeth Mushinski ◽  
Brad Burkholder ◽  
Chen-Feng Qi ◽  
Zhaoyang Li ◽  
...  

Abstract Consistent with the role of activation induced cytidine deaminase (AID) as a major “catalyst” of aberrant translocations between the Ig switch regions and c-myc, AID-sufficient Bcl-xL transgenic mice rapidly develop transplantable plasmacytomas with classical T(12;15) translocations. Unexpectedly, we found that Bcl-xL transgenic BALB/cAn mice deficient for AID (designated pBxAicda−/− mice) also developed plasma cell tumors but with a lower frequency (24% vs. 62%) and with a longer mean latency (108 d vs. 36 d) than AID-sufficient controls. Six out of nine of primary tumors were shown by interphase FISH to contain a T(12;15) translocation and one other had a T(6;15). pBxAicda−/− tumors did not transplant well because they were presumably in early stages of neoplastic development or had not progressed to full malignancy including association with ascites. Nevertheless, two tumors (4885 and 4961) were successfully transplanted and established as stable cell lines. They exhibited mature plasma cell phenotype (CD45−, CD138+, PC-1+, CD19−, CD23−) and secreted IgM. Gene expression profiling showed no significant difference from control plasma cell tumors of AID-sufficient mice. Detailed molecular and cytogenetic analysis of 4885 uncovered an unusual unbalanced T(12;15) translocation with IgH Cμ and Pvt-1 in a head to tail orientation at the breakpoint, resulting in elevated c-myc expression as detected by qPCR. In contrast, 4961, a T(12;15) negative cell line, had elevated N-myc expression as a result of paracentric inversion of Chr. 12. These rearrangements had no direct association with RAG activity. We conclude that rapid development of malignant plasma cell tumors with reciprocal T(12;15) does require AID, and that in AID deficiency a novel less efficient mechanism can be utilized to bring c-myc and Ig genes into juxtaposition.


2008 ◽  
Vol 364 (1517) ◽  
pp. 667-673 ◽  
Author(s):  
Uttiya Basu ◽  
Andrew Franklin ◽  
Frederick W Alt

The assembled immunoglobulin genes in the B cells of mice and humans are altered by distinct processes known as class switch recombination (CSR) and somatic hypermutation, leading to diversification of the antibody repertoire. These two DNA modification processes are initiated by the B cell-specific protein factor activation-induced cytidine deaminase (AID). AID is post-translationally modified by phosphorylation at multiple sites, although functional significance during CSR has been implicated only for phosphorylation at serine-38 (S38). Although multiple laboratories have demonstrated that AID function is regulated via phosphorylation at S38, the precise biological role of S38 phosphorylation has been a topic of debate. Here, we discuss our interpretation of the significance of AID regulation via phosphorylation and also discuss how this form of AID regulation may have evolved in higher organisms.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 397-397
Author(s):  
Xiwen Gu ◽  
Carmen J. Booth ◽  
David G. Schatz ◽  
Matthew P. Strout

Abstract Abstract 397 Upon antigenic stimulation of B cells, germinal centers (GCs) are formed where somatic hypermutation (SHM) and class switch recombination (CSR) of immunoglobulin (Ig) genes serve to diversify the immune response. SHM and CSR are initiated by the enzyme activation induced cytidine deaminase (AID) through the conversion of C/G base pairs to U-G mismatches. These mismatches are processed by UNG-dependent base excision repair (BER) and MSH2-dependent mismatch repair (MMR) pathways to yield mutations (for SHM) and DNA strand lesions (for CSR). Despite this essential role in immune diversification, the intrinsic activity of AID as a DNA mutator poses a threat to genomic integrity. Indeed, aberrant targeting of AID activity is associated with translocations and point mutations of proto-oncogenes associated with B cell malignancies. A specific dependence on AID in the pathogenesis of lymphomas of GC B cell origin is exemplified in Iμ-Bcl6 knock-in mice. These mice develop a diffuse large B cell lymphoma (DLBL) that resembles the human disease but are protected from development of this lymphoma when crossed onto an Aid-deficient background. To investigate the role of Aid-associated DNA repair in the pathogenesis of this disease, we crossed Iμ-Bcl6 mice onto a background deficient in BER (Ung−/−) and MMR (Msh2−/−). Young healthy Iμ-Bcl6 and Iμ-Bcl6 Ung−/−Msh2−/− mice displayed a normal number and distribution of B cells and normal architecture of lymphoid organs. Five of 28 Iμ-Bcl6 mice (17.9%) became sick starting at ∼12 months of age. Historically, median survival in these mice has not been reached and ∼80% survive to 15 months. In contrast, 21 of 28 Iμ-Bcl6 Ung−/−Msh2−/−mice (75%) developed disease with an onset of ∼3 months and had a median survival of 6.2 months (p<0.0001). All 5 of the Iμ-Bcl6 mice and the majority of Iμ-Bcl6 Ung−/−Msh2−/−mice developed B cell lymphoma with splenic involvement and variable nodal involvement. Five of the Iμ-Bcl6 Ung−/−Msh2−/−mice developed other cancers (3 T cell lymphomas, 1 pre-B cell lymphoma and 1 colon adenocarcinoma). Tumors from both genotypes expressed a mature B cell phenotype (B220+ IgM+ Igκ+ CD138-) and morphology revealed loss of normal lymphoid architecture with infiltration by lymphoid blasts. Additional staining demonstrated expression of at least one GC marker (Fas, GL7 and/or PNA). Similar to Iμ-Bcl6 mice, while many of the Iμ-Bcl6 Ung−/−Msh2−/−tumors had clonal mutated Ig heavy chain gene variable regions, two of the tumors were identified as oligoclonal, suggesting a preceding lymphoproliferative stage. In the absence of Ung and Msh2, Aid-generated U-G mismatches are not recognized and are simply replicated, causing only C/G to T/A transition mutations and no strand lesions. Thus, as expected, all Ig mutations in Iμ-Bcl6 Ung−/−Msh2−/−mice were C/G to T/A transitions. Lymphomas from Iμ-Bcl6 mice have been found to harbor numerous chromosome translocations and aneuploidies. Although additional analyses are underway, spectral karyotyping of 3 Iμ-Bcl6 Ung−/−Msh2−/−tumors revealed 2 with normal cytogenetics and 1 with a 40–41,XX,t(2;17),+15,+19. Surprisingly, sequence analysis of several known Aid target genes (cMyc, Pim1, RhoH, Pax5, Cd79a, Fas, H2ax and OcaB) in tumors from 3 Iμ-Bcl6 Ung−/−Msh2−/− mice did not identify any clonal mutations. However, non-clonal C/T to T/A transition mutations in cMyc were present at a frequency of 1.2 × 10−4, suggestive of ongoing Aid activity. The presence of Aid activity but absence of off-target Aid-mediated clonal SHM suggests that either other genes are targeted by Aid or that Aid has a secondary role in lymphomagenesis such as epigenetic reprogramming, as has been shown in iPS cells. Nonetheless, the incidence of Aid-dependent lymphomagenesis in the absence of Aid-associated DNA repair is significantly increased and the latency is greatly shortened. Altogether, this data suggests that Aid-associated BER and MMR pathways afford a protective effect against the development of Aid-dependent GC B cell lymphomas such as DLBL. To investigate the role of the individual Aid-associated DNA repair pathways, we have also generated Iμ-Bcl6 Ung−/− and Iμ-Bcl6 Msh2−/− single knockout mice. These studies are ongoing but preliminary results suggest that while the effect of Ung and Msh2 deficiency on lymphomagenesis may be synergistic, Msh2 might play a more critical role in preventing Aid-mediated genomic instability. Disclosures: No relevant conflicts of interest to declare.


2007 ◽  
Vol 204 (8) ◽  
pp. 1989-1998 ◽  
Author(s):  
Petra Langerak ◽  
Anders O.H. Nygren ◽  
Peter H.L. Krijger ◽  
Paul C.M. van den Berk ◽  
Heinz Jacobs

B cells use translesion DNA synthesis (TLS) to introduce somatic mutations around genetic lesions caused by activation-induced cytidine deaminase. Monoubiquitination at lysine164 of proliferating cell nuclear antigen (PCNAK164) stimulates TLS. To determine the role of PCNAK164 modifications in somatic hypermutation, PCNAK164R knock-in mice were generated. PCNAK164R/K164R mutants are born at a sub-Mendelian frequency. Although PCNAK164R/K164R B cells proliferate and class switch normally, the mutation spectrum of hypermutated immunoglobulin (Ig) genes alters dramatically. A strong reduction of mutations at template A/T is associated with a compensatory increase at G/C, which is a phenotype similar to polymerase η (Polη) and mismatch repair–deficient B cells. Mismatch recognition, monoubiquitinated PCNA, and Polη likely cooperate in establishing mutations at template A/T during replication of Ig genes.


PLoS ONE ◽  
2013 ◽  
Vol 8 (4) ◽  
pp. e62066 ◽  
Author(s):  
Yosuke Nakanishi ◽  
Satoru Kondo ◽  
Naohiro Wakisaka ◽  
Akira Tsuji ◽  
Kazuhira Endo ◽  
...  

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1538-1538
Author(s):  
Franziska Auer ◽  
Deborah Ingenhag ◽  
Isidro Sánchez-García ◽  
Arndt Borkhardt ◽  
Julia Hauer

Abstract Introduction: Activation induced cytidine deaminase (AID) mediates somatic hypermutation and class switch recombination in splenic germinal center B cells and is implicated in retaining central B cell tolerance in the bone marrow (BM) (Cantaert et al., Immunity, 2015). Moreover, there is recent in vitro evidence that AID is upregulated in precursor B cells after exposure to LPS, contributing to the clonal evolution of pB-ALL (Swaminathan et al., Nat Immunol, 2015) (Greaves M. and Müschen M., Cancer Discovery, 2015). These studies were carried out in pre-BII / early immature B cells, which are the first B cell compartments with detectable intrinsic AID expression. However a functional role of AID in pro-B cells is still controversially discussed and a functional role of AID in leukemogenesis remains speculative. We designed an in vivo model which allowed us the investigation of intrinsic Aid expression in tumor prone pro-B cells. Our data indicate that Aid is a gate keeper at the early stage of B cell development and its loss of function facilitates the development of pB-ALL. Methods: We crossed a Rag1 deficient tumor prone mouse model (p19Arf-/-/Rag1-/-) (Hauer et al., Blood, 2011) on an Aid deficient background to obtain Aid knockout (p19Arf-/-/Rag1-/-/Aid-/-) and heterozygous (p19Arf-/-/Rag1-/-/Aid+/-) mice. Healthy and diseased mice were characterized by immunohistochemistry, Flow cytometric analysis, genome and transcriptome profiling. Cell cycle analysis was performed with pro-B cells of healthy mice. Results: P19Arf-/-Rag1-/- mice display a B cell developmental arrest at the pro-B stage and develop pB-ALL at an incidence of 26 %. Surprisingly, an additional loss of Aid in these cells accelerated the pB-ALL incidence to 98 % (44/45, median onset 25 weeks). Moreover our model reproduces the dose dependent effect of AID on regulating B cell tolerance in humans, since Aid+/- mice on the same background displayed significant disease reduction (83 %, 15/18, median onset 33 weeks, Mantel-Cox Test p=0.0175). The leukemia displayed a pro-B cell phenotype (CD19+B220+ckit+IgM-) and manifested with splenomegaly, dissemination of blast cells to the BM, peripheral blood (PB) and spleen. Pro-B tumors from p19Arf-/-Rag1-/- mice expressed Aid on transcript (qRT-PCR) and protein (western blot) level, indicating that Aid expression is not restricted to CD19+ BM cells with co-expression of a functional IgM heavy chain product but rather occurs at earlier stages of B cell development. Again this effect was dose dependent, since in pB-ALLs of p19Arf-/-Rag1-/-Aid-/+ mice Aid expression was significantly reduced. To identify the second hit we performed whole exome sequencing of murine tumors, which revealed accumulation of recurrent somatic Jak3 (R653H, V670A) and Dnm2 (G397R) mutations. To extend these findings further, Sanger sequencing of these regions displayed a mutational pattern of somatic Jak3 mutations in 60 % of Aid+/- and 80 % of Aid-/-pB-ALLs, while Dnm2 was somatically mutated in 96 % of all pB-ALLs analyzed. The detected Jak3 variants are known to induce a constitutive active downstream signaling. Loss of function mutations in DNM2 can increase the IL-7R cell surface expression, which highlight the relevance of the IL7R signaling in the context of tumor progression. However we did not observe detectable Aid expression in healthy pro-B cells of p19Arf-/-Rag1-/- animals in line with findings from Cantaert et al. On the other hand loss of Aid expression accelerates the repopulation capacity starting at the pro-B cell compartment (Kuraoka et al., Proc Natl Acad Sci, 2011). In our model Aid loss produces a dose dependent increase in proliferation and BrdU assays of B220+ sorted pro-B cells of healthy mice from the different cohorts (30 % cells in S-Phase in p19Arf-/-Rag1-/-compared to 50 % S-Phase with additional Aid loss), although Aid expression is below the detection limit. Conclusion: We present in vivo evidence that Aid has a gate keeper function in pro-B cells, which allows aberrant IL-7 dependent pro-B cells without a functional receptor to be eliminated through Aid induction. This further extends the observation that Aid mediates the clearance of autoreactive early immature B-cell clones and is required to prevent pB-ALL. In this regard Aid overexpression but also loss of Aid expression can facilitate pB-ALL development. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document