Efficient Wound Healing Using a Synthetic Nanofibrous Bilayer Skin Substitute in Murine Model

2020 ◽  
Vol 245 ◽  
pp. 31-44 ◽  
Author(s):  
Shaghayegh Arasteh ◽  
Sayeh Khanjani ◽  
Hannaneh Golshahi ◽  
Sahba Mobini ◽  
Masoud Taghizadeh Jahed ◽  
...  
Medicina ◽  
2021 ◽  
Vol 57 (2) ◽  
pp. 143
Author(s):  
Herbert Leopold Haller ◽  
Matthias Rapp ◽  
Daniel Popp ◽  
Sebastian Philipp Nischwitz ◽  
Lars Peter Kamolz

Successful research and development cooperation between a textile research institute, the German Federal Ministry of Education and Research via the Center for Biomaterials and Organ Substitutes, the University of Tübingen, and the Burn Center of Marienhospital, Stuttgart, Germany, led to the development of a fully synthetic resorbable temporary epidermal skin substitute for the treatment of burns, burn-like syndromes, donor areas, and chronic wounds. This article describes the demands of the product and the steps that were taken to meet these requirements. The material choice was based on the degradation and full resorption of polylactides to lactic acid and its salts. The structure and morphology of the physical, biological, and degradation properties were selected to increase the angiogenetic abilities, fibroblasts, and extracellular matrix generation. Water vapor permeability and plasticity were adapted for clinical use. The available scientific literature was screened for the use of this product. A clinical application demonstrated pain relief paired with a reduced workload, fast wound healing with a low infection rate, and good cosmetic results. A better understanding of the product’s degradation process explained the reduction in systemic oxidative stress shown in clinical investigations compared to other dressings, positively affecting wound healing time and reducing the total area requiring skin grafts. Today, the product is in clinical use in 37 countries. This article describes its development, the indications for product growth over time, and the scientific foundation of treatments.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1219
Author(s):  
Luca Melotti ◽  
Tiziana Martinello ◽  
Anna Perazzi ◽  
Ilaria Iacopetti ◽  
Cinzia Ferrario ◽  
...  

Skin wound healing is a complex and dynamic process that aims to restore lesioned tissues. Collagen-based skin substitutes are a promising treatment to promote wound healing by mimicking the native skin structure. Recently, collagen from marine organisms has gained interest as a source for producing biomaterials for skin regenerative strategies. This preliminary study aimed to describe the application of a collagen-based skin-like scaffold (CBSS), manufactured with collagen extracted from sea urchin food waste, to treat experimental skin wounds in a large animal. The wound-healing process was assessed over different time points by the means of clinical, histopathological, and molecular analysis. The CBSS treatment improved wound re-epithelialization along with cell proliferation, gene expression of growth factors (VEGF-A), and development of skin adnexa throughout the healing process. Furthermore, it regulated the gene expression of collagen type I and III, thus enhancing the maturation of the granulation tissue into a mature dermis without any signs of scarring as observed in untreated wounds. The observed results (reduced inflammation, better re-epithelialization, proper development of mature dermis and skin adnexa) suggest that sea urchin-derived CBSS is a promising biomaterial for skin wound healing in a “blue biotechnologies” perspective for animals of Veterinary interest.


2020 ◽  
Author(s):  
Yanxia Zhu ◽  
Yuqi Liao ◽  
Yuanyuan Zhang ◽  
Xinyi Wang ◽  
Jianhao Zhang ◽  
...  

Abstract Background Development of natural biodegradable electrospun nanofibrous with appropriate physical properties and biocompatibility is highly desirable to support multi-layer cell sheets construction for wound healing. Results We developed a series of electrospun gelatin/chitosan nanofibrous with different gelatin/chitosan ratios and controlled pore sizes, and impregnated plasmid VEGF into membrane, which as supporting membrane to construct sandwich-like adipose-derived stem cells (ADSCs) cell sheets with a simple and effective technique for accelerated wound healing. We found that the physical properties of the electrospun nanofibrous including water retention, stiffness, strength, elasticity and degradation could be tailored by changing the proportion of gelatin/chitosan. We further observed that the optimized electrospun nanofibrous with the optimal ratio of gelatin to chitosan (7:3) which were soft and elastic could most effectively support cell adhesion, proliferation and migration into the whole nanofibrous membranes. Nanofibrous delivered plasmid VEGF facilitating multi-layer ADSC cell sheets formation and promoting regeneration of cutaneous tissues within two weeks. Conclusions Such natural biodegradable and biocompatible electrospun gelatin/chitosan nanofibrous with plasmid have the potential to become fully cellularized and support sandwich-like ADSC cell sheets formation, which will make it suitable for widespread applications such as skin substitute or wound dressing.


2020 ◽  
Author(s):  
Afshin Fathi ◽  
Mehdi Khanmohammadi ◽  
Arash Goodarzi ◽  
Lale Foroutani ◽  
Zahra Taherian Mobarakeh ◽  
...  

Abstract Hybrid fibrous mat containing cell interactive molecules offers the ability to deliver the cells and drugs in wound bed, which will help to achieve a high therapeutic treatment. In this study, a co-electrospun hybrid of polyvinyl alcohol (PVA), chitosan (Ch) and silk fibrous mat was developed and their wound healing potential by localizing bone marrow mesenchymal stem cells (MSCs)-derived keratinocytes on it was evaluated in vitro and in vivo. It was expected that fabricated hybrid construct could promote wound healing due to its structure, physical, biological specifications. The fabricated fibrous mats were characterized for their structural, mechanical and biochemical properties. The shape uniformity and pore size of fibers showed smooth and homogenous structures of them. Fourier transform infrared spectroscopy (FTIR) verified all typical absorption characteristics of Ch-PVA + Silk polymers as well as Ch-PVA or pure PVA substrates. The contact angle and wettability measurement of fibers showed that mats found moderate hydrophilicity by addition of Ch and silk substrates compared with PVA alone. The mechanical features of Ch-PVA + Silk fibrous mat increase significantly through co-electrospun process as well as hybridization of these synthetic and natural polymers. Higher degrees of cellular attachment and proliferation obtained on Ch-PVA + Silk fibers compared with PVA and Ch-PVA fibers. In terms of the capability of Ch-PVA + Silk fibers and MSC-derived keratinocytes, histological analysis and skin regeneration results showed this novel fibrous construct could be suggested as a skin substitute in the repair of injured skin and regenerative medicine applications.


2018 ◽  
Vol 27 (10) ◽  
pp. 1535-1547 ◽  
Author(s):  
Niann-Tzyy Dai ◽  
Wen-Shyan Huang ◽  
Fang-Wei Chang ◽  
Lin-Gwei Wei ◽  
Tai-Chun Huang ◽  
...  

Skin substitutes with existing vascularization are in great demand for the repair of full-thickness skin defects. In the present study, we hypothesized that a pre-vascularized skin substitute can potentially promote wound healing. Novel three-dimensional (3D) skin substitutes were prepared by seeding a mixture of human endothelial progenitor cells (EPCs) and fibroblasts into a human plasma/calcium chloride formed gel scaffold, and seeding keratinocytes onto the surface of the plasma gel. The capacity of the EPCs to differentiate into a vascular-like tubular structure was evaluated using immunohistochemistry analysis and WST-8 assay. Experimental studies in mouse full-thickness skin wound models showed that the pre-vascularized gel scaffold significantly accelerated wound healing 7 days after surgery, and resembled normal skin structures after 14 days post-surgery. Histological analysis revealed that pre-vascularized gel scaffolds were well integrated in the host skin, resulting in the vascularization of both the epidermis and dermis in the wound area. Moreover, mechanical strength analysis demonstrated that the healed wound following the implantation of the pre-vascularized gel scaffolds exhibited good tensile strength. Taken together, this novel pre-vascularized human plasma gel scaffold has great potential in skin tissue engineering.


2018 ◽  
Vol 39 (suppl_1) ◽  
pp. S235-S236
Author(s):  
A Ghahary ◽  
M Pakyari ◽  
R Kilani

Sign in / Sign up

Export Citation Format

Share Document