Protocatechuic Acid Prevents Early Hour Ischemic Reperfusion Brain Damage by Restoring Imbalance of Neuronal Cell Death and Survival Proteins

Author(s):  
Swapnil Kale ◽  
Lopmudra P. Sarode ◽  
Amol Kharat ◽  
Saurabh Ambulkar ◽  
Anand Prakash ◽  
...  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yuhua Gong ◽  
Yuping Gong ◽  
Zongkun Hou ◽  
Tingwang Guo ◽  
Jia Deng ◽  
...  

Abstract The mechanical response of brain tissue closely relates to cerebral blood flow and brain diseases. During intracerebral haemorrhage (ICH), a mass effect occurs during the initial bleeding and results in significant tissue deformation. However, fewer studies have focused on the brain damage mechanisms and treatment approaches associated with mass effects compared to the secondary brain injuries after ICH, which may be a result of the absence of acceptable animal models mimicking a mass effect. Thus, a thermo-sensitive poly (N-isopropylacrylamide) (PNIPAM) hydrogel was synthesized and injected into the rat brain to establish an ICH model for mass effect research. The PNIPAM hydrogel or autologous blood was injected to establish an ICH animal model, and the space-occupying volumes, brain tissue elasticity, brain oedema, neuronal cell death, iron deposition and behavioural recovery were evaluated. The lower critical solution temperature of PNIPAM hydrogel was 32 °C, and the PNIPAM hydrogel had a rough surface with similar topography and pore structure to a blood clot. Furthermore, the ICH model animals who received an injection of PNIPAM and blood produced similar lesion volumes, elasticity changes and mechanically activated ion channel piezo-2 upregulation in brain tissue. Meanwhile, slight iron deposition, neuronal cell death and brain oedema were observed in the PNIPAM hydrogel model compared to the blood model. In addition, the PNIPAM hydrogel showed good biocompatibility and stability in vivo via subcutaneous implantation. Our findings show that PNIPAM hydrogel cerebral infusion can form a mass effect similar to haematoma and minimize the interference of blood, and the establishment of a mass effect ICH model is beneficial for understanding the mechanism of primary brain injury and the role of mass effects in secondary brain damage after ICH.


2021 ◽  
Vol 35 (5) ◽  
Author(s):  
Rebekka Ehinger ◽  
Anna Kuret ◽  
Lucas Matt ◽  
Nadine Frank ◽  
Katharina Wild ◽  
...  

Stroke ◽  
2014 ◽  
Vol 45 (suppl_1) ◽  
Author(s):  
Gongxiong wu ◽  
Long-Jun Wu ◽  
David E. Clapham ◽  
Edward P. Feener

Background and Purpose: Ischemic stroke ultimately leads to brain dysfunction and neurological deficits. However, the mechanisms that contribute to neuronal injury and dysfunction in ischemic stroke are not fully understood. Recent studies have shown that pharmacological inhibition of the serine protease plasma kallikrein (PK) reduced neuron death and neurological impairment in ischemic brain in mice. In this study, we examine the effects of PK on the neuronal cell death and brain damage in mice and investigate the molecular mechanism of PK-induced neuronal cell death in ischemic stroke. Methods: Ischemia was produced in wild-type (WT) and PK knockout mice by permanent middle cerebral artery occlusion (pMCAO). Infarct volume was quantified by TTC staining and brain function was evaluated by neurological scoring. The effect of PK on neuron cell death in cell culture was determined by lactate dehydrogenase (LDH) release. NMDA receptor function was measured by patch clamp and Ca2+ imaging. NR1 cleavage was detected by western blot. The effect of systemic PK inhibition on pMCAO-induced infarct volume was evaluated in mice treated with the PK inhibitor (BPCCB) or vehicle alone delivered using subcutaneously implanted osmotic pumps. Results: We show that PK deficiency in mice decreased MCAO-induced infarct volume by 39.8% (P<0.01) and improved neurological function compared responses in WT mice. Addition of PK to cell culture media enhanced NMDA-induced cell death of cortical neurons. We further show that PK induced cleavage of NR1 and identify the cleavage site in the extracellular N-terminal domain of NR1. The truncated form of NR1 displayed enhanced NMDA-stimulated current and calcium influx. Treatment of mice with a PK inhibitor reduced MCAO-induced brain damage and neuronal injury. Conclusions: PK enhances NMDA receptor-mediated excitotoxicity and ischemic neuronal death. These findings suggest that PK may serve as a potential therapeutic target for treatment of ischemic stroke.


Shock ◽  
1997 ◽  
Vol 7 (Supplement) ◽  
pp. 113
Author(s):  
C. Stadelmann ◽  
C. Bancher ◽  
W. Brück ◽  
K. Jellinger ◽  
H. Lassmann

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Antonia Clarissa Wehn ◽  
Igor Khalin ◽  
Marco Duering ◽  
Farida Hellal ◽  
Carsten Culmsee ◽  
...  

AbstractTraumatic brain injury (TBI) causes acute and subacute tissue damage, but is also associated with chronic inflammation and progressive loss of brain tissue months and years after the initial event. The trigger and the subsequent molecular mechanisms causing chronic brain injury after TBI are not well understood. The aim of the current study was therefore to investigate the hypothesis that necroptosis, a form a programmed cell death mediated by the interaction of Receptor Interacting Protein Kinases (RIPK) 1 and 3, is involved in this process. Neuron-specific RIPK1- or RIPK3-deficient mice and their wild-type littermates were subjected to experimental TBI by controlled cortical impact. Posttraumatic brain damage and functional outcome were assessed longitudinally by repetitive magnetic resonance imaging (MRI) and behavioral tests (beam walk, Barnes maze, and tail suspension), respectively, for up to three months after injury. Thereafter, brains were investigated by immunohistochemistry for the necroptotic marker phosphorylated mixed lineage kinase like protein(pMLKL) and activation of astrocytes and microglia. WT mice showed progressive chronic brain damage in cortex and hippocampus and increased levels of pMLKL after TBI. Chronic brain damage occurred almost exclusively in areas with iron deposits and was significantly reduced in RIPK1- or RIPK3-deficient mice by up to 80%. Neuroprotection was accompanied by a reduction of astrocyte and microglia activation and improved memory function. The data of the current study suggest that progressive chronic brain damage and cognitive decline after TBI depend on the expression of RIPK1/3 in neurons. Hence, inhibition of necroptosis signaling may represent a novel therapeutic target for the prevention of chronic post-traumatic brain damage.


Sign in / Sign up

Export Citation Format

Share Document