scholarly journals Vibration-based damage detection in an aircraft wing scaled model using principal component analysis and pattern recognition

2008 ◽  
Vol 313 (3-5) ◽  
pp. 560-566 ◽  
Author(s):  
I. Trendafilova ◽  
M.P. Cartmell ◽  
W. Ostachowicz
Author(s):  
Sharafiz Abdul Rahim ◽  
Graeme Manson

AbstractThis paper highlights kernel principal component analysis (KPCA) in distinguishing damage-sensitive features from the effects of liquid loading on frequency response. A vibration test is performed on an aircraft wing box incorporated with a liquid tank that undergoes various tank loading. Such experiment is established as a preliminary study of an aircraft wing that undergoes operational load change in a fuel tank. The operational loading effects in a mechanical system can lead to a false alarm as loading and damage effects produce a similar reduction in the vibration response. This study proposes a non-nonlinear transformation to separate loading effects from damage-sensitive features. Based on a baseline data set built from a healthy structure that undergoes systematic tank loading, the Gaussian parameter is measured based on the distance of the baseline data set to various damage states. As a result, both loading and damage features expand and are distinguished better. For novelty damage detection, Mahalanobis square distance (MSD) and Monte Carlo-based threshold are applied. The main contribution of this project is the nonlinear PCA projection to understand the dynamic behavior of the wing box under damage and loading influences and to differentiate both effects that arise from the tank loading and damage severities.


2014 ◽  
Vol 578-579 ◽  
pp. 1020-1023
Author(s):  
Jing Zhou Lu ◽  
Jia Chen Wang ◽  
Xu Zhu

In this paper, we introduce a set of techniques for time series analysis based on principal component analysis (PCA). Firstly, the autoregressive (AR) model is established using acceleration response data, and the root mean squared error (RMSE) of AR model is calculated based on PCA. Then a new damage sensitive feature (DSF) based on the AR coefficients is presented. To test the efficacy of the damage detection and localization methodologies, the algorithm has been tested on the analytical and experimental results of a three-story frame structure model of the Los Alamos National Laboratory. The result of the damage detection indicates that the algorithm is able to identify and localize minor to severe damage as defined for the structure. It shows that the suggested method can lead to less amount of computing time, high suitability and identification accuracy.


2020 ◽  
Vol 23 (11) ◽  
pp. 2414-2430
Author(s):  
Khaoula Ghoulem ◽  
Tarek Kormi ◽  
Nizar Bel Hadj Ali

In the general framework of data-driven structural health monitoring, principal component analysis has been applied successfully in continuous monitoring of complex civil infrastructures. In the case of linear or polynomial relationship between monitored variables, principal component analysis allows generation of structured residuals from measurement outputs without a priori structural model. The principal component analysis has been widely used for system monitoring based on its ability to handle high-dimensional, noisy, and highly correlated data by projecting the data onto a lower dimensional subspace that contains most of the variance of the original data. However, for nonlinear systems, it could be easily demonstrated that linear principal component analysis is unable to disclose nonlinear relationships between variables. This has naturally motivated various developments of nonlinear principal component analysis to tackle damage diagnosis of complex structural systems, especially those characterized by a nonlinear behavior. In this article, a data-driven technique for damage detection in nonlinear structural systems is presented. The proposed method is based on kernel principal component analysis. Two case studies involving nonlinear cable structures are presented to show the effectiveness of the proposed methodology. The validity of the kernel principal component analysis–based monitoring technique is shown in terms of the ability to damage detection. Robustness to environmental effects and disturbances are also studied.


2014 ◽  
Vol 225 (12) ◽  
Author(s):  
Norman Schreiber ◽  
Emanuel Garcia ◽  
Aart Kroon ◽  
Peter C. Ilsøe ◽  
Kurt H. Kjær ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document