Active vibration isolation and underwater sound radiation control

2008 ◽  
Vol 318 (4-5) ◽  
pp. 725-736 ◽  
Author(s):  
Zhiyi Zhang ◽  
Yong Chen ◽  
Xuewen Yin ◽  
Hongxing Hua
2011 ◽  
Vol 134 (1) ◽  
Author(s):  
Huang Xiuchang ◽  
Zhang Zhiyi ◽  
Zhang Zhenhua ◽  
Hua Hongxing

Numerical simulation of vibration control of a submerged stiffened cylindrical structure with active vibration isolators is presented. Vibration transmission from vibrating machinery to the cylindrical structure through the active vibration isolators is analyzed by a numerical model synthesized from frequency response functions (FRFs) and impedances. The coupled finite element/boundary element (FE/BE) method is employed to study the vibro-acoustic behavior of the fluid-loaded cylindrical structure. Sound pressure in the far-field is calculated in terms of the pressure and normal acceleration of the outer surface of the cylindrical shell. An adaptive multichannel control based on the filtered-x least mean squares (FxLMS) algorithm is used in the active vibration isolation. Simulation results have demonstrated that suppression of vibration of the four elastic foundations attached to the cylindrical shell will reduce the spatial-average mean-square velocity and the instantaneous radiated power of the cylindrical shell. As a result, suppression of vibration of the foundations leads to attenuation of sound radiation in the far-field induced by the radial displacement dominant mode of the shell. Moreover, vibration suppression is greatly influenced by the strong couplings among control channels. According to these results, it can be concluded that the proposed method is effective in the analysis of underwater sound radiation control of cylindrical structures.


2021 ◽  
Vol 11 (10) ◽  
pp. 4526
Author(s):  
Lihua Wu ◽  
Yu Huang ◽  
Dequan Li

Tilt vibrations inevitably have negative effects on some precise engineering even after applying horizontal and vertical vibration isolations. It is difficult to adopt a traditional passive vibration isolation (PVI) scheme to realize tilt vibration isolation. In this paper, we present and develop a tilt active vibration isolation (AVI) device using a vertical pendulum (VP) tiltmeter and a piezoelectric transducer (PZT). The potential resolution of the VP is dependent on the mechanical thermal noise in the frequency bandwidth of about 0.0265 nrad, which need not be considered because it is far below the ground tilt of the laboratory. The tilt sensitivity of the device in an open-loop mode, investigated experimentally using a voltage controller, is found to be (1.63±0.11)×105 V/rad. To compensate for the hysteresis nonlinearity of the PZT, we experimentally established the multi-loop mathematical model of hysteresis, and designed a parallel controller consisting of both a hysteresis inverse model predictor and a digital proportional–integral–differential (PID) adjuster. Finally, the response of the device working in close-loop mode to the tilt vibration was tested experimentally, and the tilt AVI device showed a good vibration isolation performance, which can remarkably reduce the tilt vibration, for example, from 6.0131 μrad to below 0.0103 μrad.


Sign in / Sign up

Export Citation Format

Share Document