scholarly journals Long-term transients and complex dynamics of a stage-structured population with time delay and the Allee effect

2016 ◽  
Vol 396 ◽  
pp. 116-124 ◽  
Author(s):  
A. Yu. Morozov ◽  
M. Banerjee ◽  
S.V. Petrovskii
2015 ◽  
Author(s):  
Bram Kuijper ◽  
Rufus A Johnstone

Abstract Despite growing evidence for nongenetic inheritance, the ecological conditions that favor the evolution of heritable parental or grandparental effects remain poorly understood. Here, we systematically explore the evolution of parental effects in a patch-structured population with locally changing environments. When selection favors the production of a mix of offspring types, this mix differs according to the parental phenotype, implying that parental effects are favored over selection for bet-hedging in which the mixture of offspring phenotypes produced does not depend on the parental phenotype. Positive parental effects (generating a positive correlation between parental and offspring phenotype) are favored in relatively stable habitats and when different types of local environment are roughly equally abundant, and can give rise to long-term parental inheritance of phenotypes. By contrast, unstable habitats can favor negative parental effects (generating a negative correlation between parental and offspring phenotype), and under these circumstances even slight asymmetries in the abundance of local environmental states select for marked asymmetries in transmission fidelity.


2020 ◽  
Author(s):  
Merlijn Olthof ◽  
Fred Hasselman ◽  
Anna Lichtwarck-Aschoff

Background: Psychopathology research is changing focus from group-based ‘disease models’ to a personalized approach inspired by complex systems theories. This approach, which has already produced novel and valuable insights into the complex nature of psychopathology, often relies on repeated self-ratings of individual patients. So far it has been unknown whether such self-ratings, the presumed observables of the individual patient as a complex system, actually display complex dynamics. We examine this basic assumption of a complex systems approach to psychopathology by testing repeated self-ratings for three markers of complexity: memory, the presence of (time-varying) short- and long-range temporal correlations, regime shifts, transitions between different dynamic regimes, and, sensitive dependence on initial conditions, also known as the ‘butterfly effect’, the divergence of initially similar trajectories.Methods: We analysed repeated self-ratings (1476 time points) from a single patient for the three markers of complexity using Bartels rank test, (partial) autocorrelation functions, time-varying autoregression, a non-stationarity test, change point analysis and the Sugihara-May algorithm.Results: Self-ratings concerning psychological states (e.g., the item ‘I feel down’) exhibited all complexity markers: time-varying short- and long-term memory, multiple regime shifts and sensitive dependence on initial conditions. Unexpectedly, self-ratings concerning physical sensations (e.g., the item ‘I am hungry’) exhibited less complex dynamics and their behaviour was more similar to random variables. Conclusions: Psychological self-ratings display complex dynamics. The presence of complexity in repeated self-ratings means that we have to acknowledge that (1) repeated self-ratings yield a complex pattern of data and not a set of (nearly) independent data points, (2) humans are ‘moving targets’ whose self-ratings display non-stationary change processes including regime shifts, and (3) long-term prediction of individual trajectories may be fundamentally impossible. These findings point to a limitation of popular statistical time series models whose assumptions are violated by the presence of these complexity markers. We conclude that a complex systems approach to mental health should appreciate complexity as a fundamental aspect of psychopathology research by adopting the models and methods of complexity science. Promising first steps in this direction, such as research on real-time process-monitoring, short-term prediction, and just-in-time interventions, are discussed.


2006 ◽  
Vol 14 (03) ◽  
pp. 387-412 ◽  
Author(s):  
ALAKES MAITI ◽  
G. P. SAMANTA

Complex dynamics of a tritrophic food chain model is discussed in this paper. The model is composed of a logistic prey, a classical Lotka-Volterra functional response for prey-predator and a ratio-dependent functional response for predator-superpredator. Dynamical behaviors such as boundedness, stability and bifurcation of the model are studied critically. The effect of discrete time-delay on the model is investigated. Computer simulation of various solutions is presented to illustrate our mathematical findings. How these ideas illuminate some of the observed properties of real populations in the field is discussed and practical implications are explored.


Author(s):  
Florinda Capone ◽  
Maria Francesca Carfora ◽  
Roberta De Luca ◽  
Isabella Torcicollo

Abstract A reaction–diffusion system governing the prey–predator interaction with Allee effect on the predators, already introduced by the authors in a previous work is reconsidered with the aim of showing destabilization mechanisms of the biologically meaning equilibrium and detecting some aspects for the eventual oscillatory pattern formation. Extensive numerical simulations, depicting such complex dynamics, are shown. In order to complete the stability analysis of the coexistence equilibrium, a nonlinear stability result is shown.


2013 ◽  
Vol 45 (4) ◽  
pp. 1182-1197
Author(s):  
N. Lanchier

This article is concerned with a stochastic multipatch model in which each local population is subject to a strong Allee effect. The model is obtained by using the framework of interacting particle systems to extend a stochastic two-patch model that was recently introduced by Kang and the author. The main objective is to understand the effect of the geometry of the network of interactions, which represents potential migrations between patches, on the long-term behavior of the metapopulation. In the limit as the number of patches tends to ∞, there is a critical value for the Allee threshold below which the metapopulation expands and above which the metapopulation goes extinct. Spatial simulations on large regular graphs suggest that this critical value strongly depends on the initial distribution when the degree of the network is large, whereas the critical value does not depend on the initial distribution when the degree is small. Looking at the system starting with a single occupied patch on the complete graph and on the ring, we prove analytical results that support this conjecture. From an ecological perspective, these results indicate that, upon arrival of an alien species subject to a strong Allee effect to a new area, though dispersal is necessary for its expansion, fast long-range dispersal drives the population toward extinction.


Author(s):  
Srđan Kostić ◽  
Nebojša Vasović ◽  
Dragutin Jevremović ◽  
Duško Sunarić ◽  
Igor Franović ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document