scholarly journals Myocardial infarction in rats causes partial impairment in insulin response associated with reduced fatty acid oxidation and mitochondrial gene expression

2010 ◽  
Vol 140 (5) ◽  
pp. 1160-1167 ◽  
Author(s):  
Paulo A. Amorim ◽  
T. Dung Nguyen ◽  
Yasushige Shingu ◽  
Michael Schwarzer ◽  
Friedrich W. Mohr ◽  
...  
2010 ◽  
Vol 285 (42) ◽  
pp. 31995-32002 ◽  
Author(s):  
Nargis Nasrin ◽  
Xiaoping Wu ◽  
Eric Fortier ◽  
Yajun Feng ◽  
Olivia Claire Bare' ◽  
...  

2009 ◽  
Vol 284 (28) ◽  
pp. 18624-18633 ◽  
Author(s):  
Sandra Kleiner ◽  
Van Nguyen-Tran ◽  
Olivia Baré ◽  
Xueming Huang ◽  
Bruce Spiegelman ◽  
...  

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Zhenling Liu ◽  
Yina Ma ◽  
Michelle Kuznicki ◽  
Xingchi Chen ◽  
Wanqing Sun ◽  
...  

Introduction: Trimetazidine (TMZ) is an anti-anginal drug that has been widely used in Europe and Asia. The TMZ can optimize energy metabolism via inhibition of long-chain 3-ketoacyl CoA thiolase (3-KAT) in the heart, with subsequent decrease in fatty acid oxidation and stimulation of glucose oxidation. However, the mechanism by which TMZ aids in cardioprotection against ischemic injury has not been characterized. Hypothesis: AMP-activated protein kinase (AMPK) is an energy sensor that control ATP supply from substrate metabolism and protect heart from energy stress. TMZ changes the cardiac AMP/ATP ratio via modulating fatty acid oxidation, thereby it may trigger AMPK signaling cascade that contribute to protection heart from ischemia/reperfusion (I/R) injury. Methods: The mouse in vivo regional ischemia and reperfusion by the ligation of the left anterior descending coronary artery (LAD) were used for determination of myocardial infarction. The infarct size was compared between C57BL/6J WT mice and AMPK kinase dead (KD) transgenic mice with or without TMZ treatment. The ex vivo working heart perfusion system was used to monitor the effect of TMZ on glucose oxidation and fatty acid oxidation in the heart. Results: TMZ treatment significantly stimulates cardiac AMPK and extracellular signal-regulated kinase (ERK) signaling pathways (p<0.05 vs. vehicle group). The administration of TMZ reduces myocardial infarction size in WT C57BL/6J hearts, the reduction of myocardial infarction size by TMZ in AMPK KD hearts was significantly impaired versus WT hearts (p<0.05). Intriguingly, the administration of ERK inhibitor, PD 98059, to AMPK KD mice abolished the cardioprotection of TMZ against I/R injury. The ex vivo working heart perfusion data demonstrated that TMZ treatment significantly activates AMPK signaling and modulating the substrate metabolism by shifting fatty acid oxidation to glucose oxidation during reperfusion, leading to reduction of oxidative stress in the I/R hearts. Conclusions: Both AMPK and ERK signaling pathways mediate the cardioprotection of TMZ against ischemic injury. The metabolic benefits of TMZ for angina patients could be due to the activation of energy sensor AMPK in the heart by TMZ administration.


PLoS ONE ◽  
2015 ◽  
Vol 10 (4) ◽  
pp. e0122024 ◽  
Author(s):  
Linyi Li ◽  
Hisae Yoshitomi ◽  
Ying Wei ◽  
Lingling Qin ◽  
Jingxin Zhou ◽  
...  

2004 ◽  
Vol 258 (1/2) ◽  
pp. 171-182 ◽  
Author(s):  
Pascal Degrace ◽  
Laurent Demizieux ◽  
Joseph Gresti ◽  
Marcelline Tsoko ◽  
Agnès André ◽  
...  

Circulation ◽  
1996 ◽  
Vol 94 (11) ◽  
pp. 2837-2842 ◽  
Author(s):  
Michael N. Sack ◽  
Toni A. Rader ◽  
Sonhee Park ◽  
Jean Bastin ◽  
Sylvia A. McCune ◽  
...  

2015 ◽  
Vol 172 (5) ◽  
pp. 1319-1332 ◽  
Author(s):  
E Liepinsh ◽  
M Makrecka-Kuka ◽  
J Kuka ◽  
R Vilskersts ◽  
E Makarova ◽  
...  

2004 ◽  
Vol 24 (20) ◽  
pp. 9079-9091 ◽  
Author(s):  
Janice M. Huss ◽  
Inés Pineda Torra ◽  
Bart Staels ◽  
Vincent Giguère ◽  
Daniel P. Kelly

ABSTRACT Estrogen-related receptors (ERRs) are orphan nuclear receptors activated by the transcriptional coactivator peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1α (PGC-1α), a critical regulator of cellular energy metabolism. However, metabolic target genes downstream of ERRα have not been well defined. To identify ERRα-regulated pathways in tissues with high energy demand such as the heart, gene expression profiling was performed with primary neonatal cardiac myocytes overexpressing ERRα. ERRα upregulated a subset of PGC-1α target genes involved in multiple energy production pathways, including cellular fatty acid transport, mitochondrial and peroxisomal fatty acid oxidation, and mitochondrial respiration. These results were validated by independent analyses in cardiac myocytes, C2C12 myotubes, and cardiac and skeletal muscle of ERRα−/− mice. Consistent with the gene expression results, ERRα increased myocyte lipid accumulation and fatty acid oxidation rates. Many of the genes regulated by ERRα are known targets for the nuclear receptor PPARα, and therefore, the interaction between these regulatory pathways was explored. ERRα activated PPARα gene expression via direct binding of ERRα to the PPARα gene promoter. Furthermore, in fibroblasts null for PPARα and ERRα, the ability of ERRα to activate several PPARα targets and to increase cellular fatty acid oxidation rates was abolished. PGC-1α was also shown to activate ERRα gene expression. We conclude that ERRα serves as a critical nodal point in the regulatory circuitry downstream of PGC-1α to direct the transcription of genes involved in mitochondrial energy-producing pathways in cardiac and skeletal muscle.


Sign in / Sign up

Export Citation Format

Share Document