scholarly journals Consequences of mitral valve prolapse on chordal tension: Ex vivo and in vivo studies in large animal models

2011 ◽  
Vol 142 (6) ◽  
pp. 1585-1587 ◽  
Author(s):  
Mathieu Granier ◽  
Morten O. Jensen ◽  
Jesper L. Honge ◽  
Alain Bel ◽  
Philippe Menasché ◽  
...  
2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Gemma Vilahur ◽  
Teresa Padro ◽  
Lina Badimon

Atherosclerosis and its thrombotic complications are responsible for remarkably high numbers of deaths. The combination ofin vitro, ex vivo, andin vivoexperimental approaches has largely contributed to a better understanding of the mechanisms underlying the atherothrombotic process. Indeed, different animal models have been implemented in atherosclerosis and thrombosis research in order to provide new insights into the mechanisms that have already been outlined in isolated cells and protein studies. Yet, although no model completely mimics the human pathology, large animal models have demonstrated better suitability for translation to humans. Indeed, direct translation from mice to humans should be taken with caution because of the well-reported species-related differences. This paper provides an overview of the availableatherothrombotic-likeanimal models, with a particular focus on large animal models of thrombosis and atherosclerosis, and examines their applicability for translational research purposes as well as highlights species-related differences with humans.


Author(s):  
Casey L. Korecki ◽  
Benjamin A. Walter ◽  
Karolyn E. Godburn ◽  
James C. Iatridis

Intervertebral disc (IVD) degeneration is a complex pathology, involving alterations in mechanical and biological function. Mechanical injury to IVDs may contribute to the development of IVD degeneration, and can arise following excessive loading or repeated exposure to loading levels which are not instantaneously damaging. Lateral bending and flexion produced the highest maximum shear strains in human IVDs and are considered the motions that place the IVD at greatest risk of injury (1). The biological response of the IVD to combined bending and compression has been examined in vivo in rat and mouse tail bending models demonstrating structural disruption, apoptosis and remodeling (2,4). However, there are practical limitations to current in vivo studies, as it can be difficult to apply repeated bending loads to the disc in vivo, and few large animal models exist capable of tracking the early biological, structural and compositional changes from asymmetrical loading. IVD organ culture allows control over mechanical boundary conditions and investigation of cellular responses to loading while the IVD remains largely intact, and allows the use of large animal models which more closely mimic the nutritional and compositional nature of human IVDs.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 713
Author(s):  
Shu Fang ◽  
Ditte Gry Ellman ◽  
Ditte Caroline Andersen

To date, a wide range of materials, from synthetic to natural or a mixture of these, has been explored, modified, and examined as small-diameter tissue-engineered vascular grafts (SD-TEVGs) for tissue regeneration either in vitro or in vivo. However, very limited success has been achieved due to mechanical failure, thrombogenicity or intimal hyperplasia, and improvements of the SD-TEVG design are thus required. Here, in vivo studies investigating novel and relative long (10 times of the inner diameter) SD-TEVGs in large animal models and humans are identified and discussed, with emphasis on graft outcome based on model- and graft-related conditions. Only a few types of synthetic polymer-based SD-TEVGs have been evaluated in large-animal models and reflect limited success. However, some polymers, such as polycaprolactone (PCL), show favorable biocompatibility and potential to be further modified and improved in the form of hybrid grafts. Natural polymer- and cell-secreted extracellular matrix (ECM)-based SD-TEVGs tested in large animals still fail due to a weak strength or thrombogenicity. Similarly, native ECM-based SD-TEVGs and in-vitro-developed hybrid SD-TEVGs that contain xenogeneic molecules or matrix seem related to a harmful graft outcome. In contrast, allogeneic native ECM-based SD-TEVGs, in-vitro-developed hybrid SD-TEVGs with allogeneic banked human cells or isolated autologous stem cells, and in-body tissue architecture (IBTA)-based SD-TEVGs seem to be promising for the future, since they are suitable in dimension, mechanical strength, biocompatibility, and availability.


2021 ◽  
Vol 12 ◽  
Author(s):  
Abraham J. Matar ◽  
Rebecca L. Crepeau ◽  
Gerhard S. Mundinger ◽  
Curtis L. Cetrulo ◽  
Radbeh Torabi

Over the past twenty years, significant technical strides have been made in the area of vascularized composite tissue allotransplantation (VCA). As in solid organ transplantation, the allogeneic immune response remains a significant barrier to long-term VCA survival and function. Strategies to overcome acute and chronic rejection, minimize immunosuppression and prolong VCA survival have important clinical implications. Historically, large animals have provided a valuable model for testing the clinical translatability of immune modulating approaches in transplantation, including tolerance induction, co-stimulation blockade, cellular therapies, and ex vivo perfusion. Recently, significant advancements have been made in these arenas utilizing large animal VCA models. In this comprehensive review, we highlight recent immune strategies undertaken to improve VCA outcomes with a focus on relevant preclinical large animal models.


2018 ◽  
Author(s):  
Lawrance Chandra ◽  
Dana C Borcherding ◽  
Dawn Kingsbury ◽  
Todd Atherly ◽  
Yoko M Ambrosini ◽  
...  

AbstractBackgroundLarge animal models, such as the dog, are increasingly being used over rodent models for studying naturally occurring diseases including gastrointestinal (GI) disorders. Dogs share similar environmental, genomic, anatomical, and intestinal physiologic features with humans. To bridge the gap between currently used animal models (e.g. mouse) and humans, and expand the translational potential of the dog model, we developed a three dimensional (3D) canine GI organoid (enteroid and colonoid) system. Organoids have recently gained interest in translational research as this model system better recapitulates the physiological and molecular features of the tissue environment in comparison with two-dimensional cultures.ResultsOrganoids were propagated from isolation of adult intestinal stem cells (ISC) from whole jejunal tissue as well as endoscopically obtained duodenal, ileal and colonic biopsy samples of healthy dogs and GI cases, including inflammatory bowel disease (IBD) and intestinal carcinomas. Intestinal organoids were comprehensively characterized using histology, immunohistochemistry, RNA in situ hybridization and transmission electron microscopy, and organoids mimicked the in vivo tissue environment. Physiological relevance of the enteroid system was defined using functional assays such as Optical Metabolic Imaging (OMI), the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) function assay, and Exosome-Like Vesicles (EV) uptake assay, as a basis for wider applications of this technology in basic, preclinical and translational GI research.ConclusionsIn summary, our findings establish the canine GI organoid systems as a novel model to study naturally occurring intestinal diseases in dogs and humans. Furthermore, canine organoid systems will help to elucidate host-pathogen interactions contributing to GI disease pathogenesis.


2020 ◽  
Vol 126 (5) ◽  
pp. 663-678 ◽  
Author(s):  
Cheng-Kai Huang ◽  
Sabine Kafert-Kasting ◽  
Thomas Thum

RNA modulation has become a promising therapeutic approach for the treatment of several types of disease. The emerging field of noncoding RNA-based therapies has now come to the attention of cardiovascular research, in which it could provide valuable advancements in comparison to current pharmacotherapy such as small molecule drugs or antibodies. In this review, we focus on noncoding RNA-based studies conducted mainly in large-animal models, including pigs, rabbits, dogs, and nonhuman primates. The obstacles and promises of targeting long noncoding RNAs and circRNAs as therapeutic modalities in humans are specifically discussed. We also describe novel ex vivo methods based on human cells and tissues, such as engineered heart tissues and living myocardial slices that could help bridging the gap between in vivo models and clinical applications in the future. Finally, we summarize antisense oligonucleotide drugs that have already been approved by the Food and Drug Administration for targeting mRNAs and discuss the progress of noncoding RNA-based drugs in clinical trials. Additional factors, such as drug chemistry, drug formulations, different routes of administration, and the advantages of RNA-based drugs, are also included in the present review. Recently, first therapeutic miRNA-based inhibitory strategies have been tested in heart failure patients as well as healthy volunteers to study effects on wound healing (NCT04045405; NCT03603431). In summary, a combination of novel therapeutic RNA targets, large-animal models, ex vivo studies with human cells/tissues, and new delivery techniques will likely lead to significant progress in the development of noncoding RNA-based next-generation therapeutics for cardiovascular disease.


2018 ◽  
Vol 24 (4) ◽  
pp. 317-325 ◽  
Author(s):  
Banu Akar ◽  
Alexander M. Tatara ◽  
Alok Sutradhar ◽  
Hui-Yi Hsiao ◽  
Michael Miller ◽  
...  

2019 ◽  
Vol 5 (7) ◽  
pp. eaaw4357 ◽  
Author(s):  
Jinqiang Wang ◽  
Jicheng Yu ◽  
Yuqi Zhang ◽  
Xudong Zhang ◽  
Anna R. Kahkoska ◽  
...  

Glucose-responsive insulin delivery systems with robust responsiveness that has been validated in animal models, especially in large animal models, remain elusive. Here, we exploit a new strategy to form a micro-sized complex between a charge-switchable polymer with a glucose-sensing moiety and insulin driven by electrostatic interaction. Both high insulin loading efficiency (95%) and loading capacity (49%) can be achieved. In the presence of a hyperglycemic state, the glucose-responsive phenylboronic acid (PBA) binds glucose instantly and converts the charge of the polymeric moiety from positive to negative, thereby enabling the release of insulin from the complex. Adjusting the ratio of the positively charged group to PBA achieves inhibited insulin release from the complex under normoglycemic conditions and promoted release under hyperglycemic conditions. Through chemically induced type 1 diabetic mouse and swine models, in vivo hyperglycemia-triggered insulin release with fast response is demonstrated after the complex is administrated by either subcutaneous injection or transdermal microneedle array patch.


Sign in / Sign up

Export Citation Format

Share Document