Efficiency of electrocoagulation method to treat chicken processing industry wastewater—modeling and optimization

2014 ◽  
Vol 45 (5) ◽  
pp. 2427-2435 ◽  
Author(s):  
K. Thirugnanasambandham ◽  
V. Sivakumar ◽  
J. Prakash Maran
1998 ◽  
Vol 19 (4) ◽  
pp. 417-424 ◽  
Author(s):  
R. Krishnan ◽  
R. Ríos ◽  
N. Salinas ◽  
C. Durán-de-Bazúa

2011 ◽  
Vol 64 (8) ◽  
pp. 1629-1635 ◽  
Author(s):  
M. Esparza Soto ◽  
C. Solís Morelos ◽  
J. J. Hernández Torres

The aim of this work was to evaluate the performance of a pilot-scale upflow anaerobic sludge blanket (UASB) reactor during the treatment of cereal-processing industry wastewater under low-temperature conditions (17 °C) for more than 300 days. The applied organic loading rate (OLRappl) was gradually increased from 4 to 6 and 8 kg CODsol/m3d by increasing the influent soluble chemical oxygen demand (CODsol), while keeping the hydraulic retention time constant (5.2 h). The removal efficiency was high (82 to 92%) and slightly decreased after increasing the influent CODsol and the OLRappl. The highest removed organic loading rate (OLRrem) was reached when the UASB reactor was operated at 8 kg CODsol/m3d and it was two times higher than that obtained for an OLRappl of 4 kg CODsol/m3d. Some disturbances were observed during the experimentation. The formation of biogas pockets in the sludge bed significantly complicated the biogas production quantification, but did not affect the reactor performance. The volatile fatty acids in the effluent were low, but increased as the OLRappl increased, which caused an increment of the effluent CODsol. Anaerobic treatment at low temperature was a good option for the biological pre-treatment of cereal processing industry wastewater.


2018 ◽  
Vol 119 ◽  
pp. 96-103 ◽  
Author(s):  
Ghasem Azarian ◽  
Ali Reza Rahmani ◽  
Mahmoud Masoudi khoram ◽  
Zeinab Atashzaban ◽  
Davood Nematollahi

2013 ◽  
Vol 67 (6) ◽  
pp. 1353-1361 ◽  
Author(s):  
M. Esparza-Soto ◽  
O. Arzate-Archundia ◽  
C. Solís-Morelos ◽  
C. Fall

The aim of this work was to evaluate the performance of a 244-L pilot-scale upflow anaerobic sludge blanket (UASB) reactor during the treatment of chocolate-processing industry wastewater under low-temperature conditions (18 ± 0.6 °C) for approximately 250 d. The applied organic loading rate (OLR) was varied between 4 and 7 kg/m3/d by varying the influent soluble chemical oxygen demand (CODsol), while keeping the hydraulic retention time constant (6.4 ± 0.3 h). The CODsol removal efficiency was low (59–78%). The measured biogas production increased from 240 ± 54 to 431 ± 61 L/d during the experiments. A significant linear correlation between the measured biogas production and removed OLR indicated that 81.69 L of biogas were produced per kg/m3 of CODsol removed. Low average reactor volatile suspended solids (VSS) (2,700–4,800 mg/L) and high effluent VSS (177–313 mg/L) were derived in a short sludge retention time (SRT) (4.9 d). The calculated SRT was shorter than those reported in the literature, but did not affect the reactor's performance. Average sludge yield was 0.20 kg-VSS/kg-CODsol. The low-temperature anaerobic treatment was a good option for the pre-treatment of chocolate-processing industry wastewater.


Author(s):  
Carlos Eduardo Pereira de Morais ◽  
Lisa Christina Awater ◽  
Gilson Babosa Athayde Júnior ◽  
Rennio Félix de Sena ◽  
Manuel César Martí-Calatayud ◽  
...  

2019 ◽  
Vol 79 (12) ◽  
pp. 2251-2259 ◽  
Author(s):  
M. Esparza-Soto ◽  
A. Jacobo-López ◽  
M. Lucero-Chávez ◽  
C. Fall

Abstract The objective of the present study was to determine the optimum operating temperature of laboratory-scale upflow anaerobic sludge blanket (UASB) reactors during the treatment of a chocolate-processing industry wastewater at medium applied organic loading rates (OLRappl). Four UASB reactors were operated at different temperature (15, 20, 25 and 30 °C) and three OLRappl (2, 4 and 6 kg soluble chemical oxygen demand (CODs)/(m3 d)). The flowrate and the hydraulic retention time were constant (11.5 L/d and 6 h, respectively). The monitored parameters were pH, temperature, CODs, and total and volatile suspended solids. The CODs removal efficiency (RE) and biogas production rate (BPR) were calculated. The 15 °C UASB reactor had the lowest RE (39 to 78%) due to the low operating temperature. Regardless of the OLRappl, the RE of the 20, 25 and 30 °C reactors was high and similar to each other (between 88 and 94%). The BPR of the four UASB reactors had the same behaviour as the RE (BPR of 15 °C: 0.3 to 0.5 Lbiogas/(Lreactor d) (Lb/(Lr d)) and BPR of 20, 25 and 30 °C: 0.5 to 1.9 Lb/(Lr d)).


Sign in / Sign up

Export Citation Format

Share Document