Multifunctional magnetic ZnFe2O4-hydroxyapatite nanocomposite particles for local anti-cancer drug delivery and bacterial infection inhibition: An in vitro study

2019 ◽  
Vol 96 ◽  
pp. 503-508 ◽  
Author(s):  
Amir Seyfoori ◽  
S.A. Seyyed Ebrahimi ◽  
Sajjad Omidian ◽  
Seyed Morteza Naghib
2014 ◽  
Vol 2 (10) ◽  
pp. 1327-1334 ◽  
Author(s):  
Guofang Chen ◽  
Ruoyao Chen ◽  
Chunxiao Zou ◽  
Danwen Yang ◽  
Zhe-Sheng Chen

Fragmented polymer nanotubes with a thermo-responsive gating system were prepared by a 2-fold “grafting-from” strategy and sonication-induced scission for efficient drug delivery. In vitro thermo-responsive DOX drug release and chemotoxicity were testified with such nanocarriers.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1077
Author(s):  
Yan Wu ◽  
Lisa Woodbine ◽  
Antony M. Carr ◽  
Amit R. Pillai ◽  
Ali Nokhodchi ◽  
...  

One of the main applications of bone graft materials is filling the gap after the surgical removal of bone cancer or tumors. Insufficient healing commonly leads to non-union fracture which could lead to cancer resurgence or infection. Emerging 3D printing of on-demand bone graft biomaterials can deliver personalized solutions with minimized risk of relapse and recurrence of cancer after bone removal surgery. This research aims to explore 3D printed calcium phosphate cement (CPC) based scaffolds as novel anti-cancer drug delivery systems to treat bone cancer. For the study, various 3D printed CPC based scaffolds (diameter 5 mm) with interconnected pores were utilized. Various optimized polymeric solutions containing a model anticancer drug 5-fluorouracil (5-FU) was used to homogenously coat the CPC scaffolds. Both hydrophilic Soluplus (SOL) and polyethylene glycol (PEG) and a combination of both were used to develop stable coating solutions. The surface morphology of the coated scaffolds, observed via SEM, revealed deposition of the polymeric solution represented by a semi-smooth surface as opposed to the blank scaffolds that showed a smoother surface. An advanced surface analysis conducted via confocal microscopy showed a homogenous distribution of the drug throughout the coated scaffolds. Solid-state analysis studied by applying differential scanning calorimetry (DSC) and X-ray diffraction (XRD) revealed semi-crystalline nature of the drug whereas mechanical analysis conducted via texture analysis showed no evidence in the change of the mechanical properties of the scaffolds after polymeric solutions were applied. The FTIR analysis revealed no major intermolecular interactions between 5-FU and the polymers used for coatings except for F2 where a potential nominal interaction was evidenced corresponding to higher Soluplus content in the formulation. In vitro dissolution studies showed that almost 100% of the drug released within 2 h for all scaffolds. Moreover, in vitro cell culture using two different cell lines (Hek293T-human kidney immortalized cell line and HeLa-human bone osteosarcoma epithelial cell line) showed significant inhibition of cell growth as a function of decreased numbers of cells after 5 days. It can be claimed that the developed 5-FU coated 3D printed scaffolds can successfully be used as bone graft materials to potentially treat bone cancer or bone neoplasm and for personalized medical solutions in the form of scaffolds for regenerative medicine or tissue engineering applications.


2019 ◽  
Vol 43 (17) ◽  
pp. 6622-6635 ◽  
Author(s):  
Sevinc Ilkar Erdagi ◽  
Ufuk Yildiz

In this study, a polymeric nanoparticle-mediated dual anti-cancer drug delivery system was designed and developed.


Author(s):  
Sally Sabra ◽  
Mona Abdelmoneem ◽  
Mahmoud Abdelwakil ◽  
Moustafa Taha Mabrouk ◽  
Doaa Anwar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document