scholarly journals Novel and highly sensitive SYBR® Green real-time pcr for poxvirus detection in odontocete cetaceans

2018 ◽  
Vol 259 ◽  
pp. 45-49 ◽  
Author(s):  
Carlos Sacristán ◽  
José Luiz Catão-Dias ◽  
Ana Carolina Ewbank ◽  
Eduardo Ferreira-Machado ◽  
Elena Neves ◽  
...  
2007 ◽  
Vol 70 (5) ◽  
pp. 1080-1087 ◽  
Author(s):  
V. M. BOHAYCHUK ◽  
G. E. GENSLER ◽  
M. E. McFALL ◽  
R. K. KING ◽  
D. G. RENTER

Conventional culture methods have traditionally been considered the “gold standards” for the isolation and identification of foodborne pathogens. However, culture methods are labor-intensive and time-consuming. We have developed a real-time PCR assay for the detection of Salmonella in a variety of food and food-animal matrices. The real-time PCR assay incorporates both primers and hybridization probes based on the sequence of the Salmonella invA gene and uses fluorescent resonance energy transfer technology to ensure highly sensitive and specific results. This method correctly classified 51 laboratory isolates of Salmonella and 28 non-Salmonella strains. The method was also validated with a large number of field samples that consisted of porcine feces and cecal contents, pork carcasses, bovine feces and beef carcasses, poultry cecal contents and carcasses, equine feces, animal feeds, and various food products. The samples (3,388) were preenriched in buffered peptone water and then selectively enriched in tetrathionate and Rappaport-Vassiliadis broths. Aliquots of the selective enrichment broths were combined for DNA extraction and analysis by the real-time PCR assay. When compared with the culture method, the diagnostic sensitivity of the PCR assay for the various matrices ranged from 97.1 to 100.0%, and the diagnostic specificity ranged from 91.3 to 100.0%. Kappa values ranged from 0.87 to 1.00, indicating excellent agreement of the real-time PCR assay to the culture method. The reduction in time and labor makes this highly sensitive and specific real-time PCR assay an excellent alternative to conventional culture methods for surveillance and research studies to improve food safety.


2013 ◽  
Vol 58 (2) ◽  
pp. 461-467 ◽  
Author(s):  
Séverine Delarue ◽  
Emmanuelle Didier ◽  
Florence Damond ◽  
Diane Ponscarme ◽  
Karen Brengle-Pesce ◽  
...  

PLoS ONE ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. e0227143
Author(s):  
Angela Nagel ◽  
Emmanouela Dimitrakopoulou ◽  
Norbert Teig ◽  
Peter Kern ◽  
Thomas Lücke ◽  
...  

Author(s):  
Roxana Elena Nemescu ◽  
Ramona Gabriela Ursu ◽  
Carmen Mihaela Dorobăț ◽  
Luminița Smaranda Iancu

AbstractMeningococcal infection requires a fast and accurate diagnostic method in order to correctly initiate the antibiotic therapy. The aim of our study was to assess the efficiency of Real Time PCR -Taq Man using sod C gene / N. meningitidis in comparison with the classical methods for the diagnosis of meningococcal infection - direct microscopy, cultivation, latex agglutination and blood culture. We have detected 24/44 (54.54%) patients with meningococcal infection. In both cases of patients with / without previous antibiotic therapy before admission, the AUC (area under curve) had the highest values for RT PCR in CSF and blood analysis. This sod C RT-PCR assay is a highly sensitive and specific method for detection of Neisseria meningitis and it would be useful to include this method like a multiplex in routine testing of patients with clinical meningococcal infection for other etiological agents also.


2018 ◽  
Vol 101 (2) ◽  
pp. 507-514 ◽  
Author(s):  
Junichi Mano ◽  
Shuko Hatano ◽  
Yasuaki Nagatomi ◽  
Satoshi Futo ◽  
Reona Takabatake ◽  
...  

Abstract Current genetically modified organism (GMO) detection methods allow for sensitive detection. However, a further increase in sensitivity will enable more efficient testing for large grain samples and reliable testing for processed foods. In this study, we investigated real-time PCR-based GMO detection methods using a large amount of DNA template. We selected target sequences that are commonly introduced into many kinds of GM crops, i.e., 35S promoter and nopaline synthase (NOS) terminator. This makes the newly developed method applicable to a wide range of GMOs, including some unauthorized ones. The estimated LOD of the new method was 0.005% of GM maize events; to the best of our knowledge, this method is the most sensitive among the GM maize detection methods for which the LOD was evaluated in terms of GMO content. A 10-fold increase in the DNA amount as compared with the amount used under common testing conditions gave an approximately 10-fold reduction in the LOD without PCR inhibition. Our method is applicable to various analytical samples, including processed foods. The use of other primers and fluorescence probes would permit highly sensitive detection of various recombinant DNA sequences besides the 35S promoter and NOS terminator.


2005 ◽  
Vol 44 (3) ◽  
pp. 261-268 ◽  
Author(s):  
Shiho Yamazaki ◽  
Shunji Kato ◽  
Norio Matsukura ◽  
Masahiro Ohtani ◽  
Yoshiyuki Ito ◽  
...  

2004 ◽  
Vol 70 (3) ◽  
pp. 1366-1377 ◽  
Author(s):  
David Rodr�guez-L�zaro ◽  
Marta Hern�ndez ◽  
Mariela Scortti ◽  
Teresa Esteve ◽  
Jos� A. V�zquez-Boland ◽  
...  

ABSTRACT We developed and assessed real-time PCR (RTi-PCR) assays for the detection and quantification of the food-borne pathogen Listeria monocytogenes and the closely related nonpathogenic species L. innocua. The target genes were hly and iap for L. monocytogenes and lin02483 for L. innocua. The assays were 100% specific, as determined with 100 Listeria strains and 45 non-Listeria strains, and highly sensitive, with detection limits of one target molecule in 11 to 56% of the reactions with purified DNA and 3 CFU in 56 to 89% of the reactions with bacterial suspensions. Quantification was possible over a 5-log dynamic range, with a limit of 15 target molecules and R 2 values of >0.996. There was an excellent correspondence between the predicted and the actual numbers of CFU in the samples (deviations of <23%). The hly-based assay accurately quantified L. monocytogenes in all of the samples tested. The iap-based assay, in contrast, was unsuitable for quantification purposes, underestimating the bacterial counts by 3 to 4 log units in a significant proportion of the samples due to serovar-related target sequence variability. The combination of the two assays enabled us to classify L. monocytogenes isolates into one of the two major phylogenetic divisions of the species, I and II. We also assessed the new AmpliFluor technology for the quantitative detection of L. monocytogenes by RTi-PCR. The performance of this system was similar to that of the TaqMan system, although the former system was slightly less sensitive (detection limit of 15 molecules in 45% of the reactions) and had a higher quantification limit (60 molecules).


Sign in / Sign up

Export Citation Format

Share Document