scholarly journals Treatment of Hypophonia in Parkinson's Disease Through Biofeedback in Daily Life Administered with A Portable Voice Accumulator

Author(s):  
Joakim Körner Gustafsson ◽  
Maria Södersten ◽  
Sten Ternström ◽  
Ellika Schalling
Author(s):  
Robbin Romijnders ◽  
Elke Warmerdam ◽  
Clint Hansen ◽  
Julius Welzel ◽  
Gerhard Schmidt ◽  
...  

Abstract Background Identification of individual gait events is essential for clinical gait analysis, because it can be used for diagnostic purposes or tracking disease progression in neurological diseases such as Parkinson’s disease. Previous research has shown that gait events can be detected from a shank-mounted inertial measurement unit (IMU), however detection performance was often evaluated only from straight-line walking. For use in daily life, the detection performance needs to be evaluated in curved walking and turning as well as in single-task and dual-task conditions. Methods Participants (older adults, people with Parkinson’s disease, or people who had suffered from a stroke) performed three different walking trials: (1) straight-line walking, (2) slalom walking, (3) Stroop-and-walk trial. An optical motion capture system was used a reference system. Markers were attached to the heel and toe regions of the shoe, and participants wore IMUs on the lateral sides of both shanks. The angular velocity of the shank IMUs was used to detect instances of initial foot contact (IC) and final foot contact (FC), which were compared to reference values obtained from the marker trajectories. Results The detection method showed high recall, precision and F1 scores in different populations for both initial contacts and final contacts during straight-line walking (IC: recall $$=$$ = 100%, precision $$=$$ = 100%, F1 score $$=$$ = 100%; FC: recall $$=$$ = 100%, precision $$=$$ = 100%, F1 score $$=$$ = 100%), slalom walking (IC: recall $$=$$ = 100%, precision $$\ge$$ ≥ 99%, F1 score $$=$$ = 100%; FC: recall $$=$$ = 100%, precision $$\ge$$ ≥ 99%, F1 score $$=$$ = 100%), and turning (IC: recall $$\ge$$ ≥ 85%, precision $$\ge$$ ≥ 95%, F1 score $$\ge$$ ≥ 91%; FC: recall $$\ge$$ ≥ 84%, precision $$\ge$$ ≥ 95%, F1 score $$\ge$$ ≥ 89%). Conclusions Shank-mounted IMUs can be used to detect gait events during straight-line walking, slalom walking and turning. However, more false events were observed during turning and more events were missed during turning. For use in daily life we recommend identifying turning before extracting temporal gait parameters from identified gait events.


Author(s):  
Vrutangkumar V. Shah ◽  
James McNames ◽  
Martina Mancini ◽  
Patricia Carlson-Kuhta ◽  
Rebecca I. Spain ◽  
...  

Abstract Background and purpose  Recent findings suggest that a gait assessment at a discrete moment in a clinic or laboratory setting may not reflect functional, everyday mobility. As a step towards better understanding gait during daily life in neurological populations, we compared gait measures that best discriminated people with multiple sclerosis (MS) and people with Parkinson’s Disease (PD) from their respective, age-matched, healthy control subjects (MS-Ctl, PD-Ctl) in laboratory tests versus a week of daily life monitoring. Methods  We recruited 15 people with MS (age mean ± SD: 49 ± 10 years), 16 MS-Ctl (45 ± 11 years), 16 people with idiopathic PD (71 ± 5 years), and 15 PD-Ctl (69 ± 7 years). Subjects wore 3 inertial sensors (one each foot and lower back) in the laboratory followed by 7 days during daily life. Mann–Whitney U test and area under the curve (AUC) compared differences between PD and PD-Ctl, and between MS and MS-Ctl in the laboratory and in daily life. Results  Participants wore sensors for 60–68 h in daily life. Measures that best discriminated gait characteristics in people with MS and PD from their respective control groups were different between the laboratory gait test and a week of daily life. Specifically, the toe-off angle best discriminated MS versus MS-Ctl in the laboratory (AUC [95% CI] = 0.80 [0.63–0.96]) whereas gait speed in daily life (AUC = 0.84 [0.69–1.00]). In contrast, the lumbar coronal range of motion best discriminated PD versus PD-Ctl in the laboratory (AUC = 0.78 [0.59–0.96]) whereas foot-strike angle in daily life (AUC = 0.84 [0.70–0.98]). AUCs were larger in daily life compared to the laboratory. Conclusions Larger AUC for daily life gait measures compared to the laboratory gait measures suggest that daily life monitoring may be more sensitive to impairments from neurological disease, but each neurological disease may require different gait outcome measures.


Author(s):  
Hanbin Zhang ◽  
Chen Song ◽  
Aditya Singh Rathore ◽  
Mingchun Huang ◽  
Yuan Zhang ◽  
...  

2015 ◽  
Vol 69 (Suppl. 1) ◽  
pp. 6911505111p1 ◽  
Author(s):  
Linda Tickle-Degnen ◽  
Shih-yu Lur ◽  
Jessica Pickett

2017 ◽  
Vol 71 (4_Supplement_1) ◽  
pp. 7111500039p1
Author(s):  
Cailin D. Stewart ◽  
Marie Saint-Hilaire ◽  
Cathi A. Thomas ◽  
Linda Tickle-Degnen

2018 ◽  
Vol 10 (1) ◽  
pp. 102-114
Author(s):  
Markus Idvall

The aim of this article is to explore how the phenomenon of brain world, as a symptom of a possible emerging neuroculture, is perceived and enacted by patients with Parkinson’s disease, who, in their daily life, are subjected to neuroscience, most often as chronically ill individuals hoping for a cure, but also in some instances as participants in clinical trials. The article is based on a multifaceted ethnographic material that maps the experiences of biomedical research among patients with Parkinson’s. The main body of material consists of interviews carried out in 2012 and 2015, and comprises 19 transcripts of recorded conversations, conducted in groups as well as individually. The article argues that the exposure of the patients to clinical neuroscience gives birth to neuroculture. A materialist-discursive phenomenon called brain world—perceptions and enactments of the brain—is problematized on the basis of how patients cope with and reflect on their chronic illness in everyday life situations and in confrontation with clinical neuroscience. The embodied experience of the illness operates as the route into the brain world and also becomes the ground for how this world is featured with specific properties. Brain world is in this respect a contradictory entity: both plastic and fragile, both accessible and too complex, both strange and known. Most of all, brain world, in the eyes of the patients, relates to a territory still dominated by neuroscientists.


2020 ◽  
Author(s):  
Robbin Romijnders ◽  
Elke Warmerdam ◽  
Clint Hansen ◽  
Julius Welzel ◽  
Gerhard Schmidt ◽  
...  

Abstract Background: Identication of individual gait events is essential for clinical gait analysis, because it can beused for diagnostic purposes or tracking disease progression in neurological diseases such as Parkinson'sdisease. Previous research has shown that gait events can be detected from a shank-mounted inertialmeasurement unit (IMU), however detection performance was often evaluated only from straight-line walking.For use in daily life, the detection performance needs to be evaluated in curved walking and turning as well asin single-task and dual-task conditions.Methods: Participants (older adults, people with Parkinson's disease, or people who had suered from astroke) performed three dierent walking trials: 1) straight-line walking, 2) slalom walking, 3) Stroop-and-walktrial. An optical motion capture system was used a reference system. Markers were attached to the heel andtoe regions of the shoe, and participants wore IMUs on the lateral sides of both shanks. The angular velocity ofthe shank IMUs was used to detect instances of initial foot contact (IC) and nal foot contact (FC), whichwere compared to reference values obtained from the marker trajectories.Results: The detection method showed high recall, precision and F1 scores in dierent populations for bothinitial contacts and nal contacts during straight-line walking (IC: recall = 100%, precision = 100%, F1 score= 100%; FC: recall = 100%, precision = 100%, F1 score = 100%), slalom walking (IC: recall = 100%,precision 99%, F1 score =100%; FC: recall = 100%, precision 99%, F1 score =100%), and turning (IC:recall 85%, precision 95%, F1 score 91%; FC: recall 84%, precision 95%, F1 score 89%).Conclusions: Shank-mounted IMUs can be used to detect gait events during straight-line walking, slalomwalking and turning. However, more false events were observed during turning and more events were missedduring turning. For use in daily life we recommend identifying turning before extracting temporal gaitparameters from identied gait events.


Sign in / Sign up

Export Citation Format

Share Document