scholarly journals Validation of IMU-based gait event detection during curved walking and turning in older adults and Parkinson’s Disease patients

Author(s):  
Robbin Romijnders ◽  
Elke Warmerdam ◽  
Clint Hansen ◽  
Julius Welzel ◽  
Gerhard Schmidt ◽  
...  

Abstract Background Identification of individual gait events is essential for clinical gait analysis, because it can be used for diagnostic purposes or tracking disease progression in neurological diseases such as Parkinson’s disease. Previous research has shown that gait events can be detected from a shank-mounted inertial measurement unit (IMU), however detection performance was often evaluated only from straight-line walking. For use in daily life, the detection performance needs to be evaluated in curved walking and turning as well as in single-task and dual-task conditions. Methods Participants (older adults, people with Parkinson’s disease, or people who had suffered from a stroke) performed three different walking trials: (1) straight-line walking, (2) slalom walking, (3) Stroop-and-walk trial. An optical motion capture system was used a reference system. Markers were attached to the heel and toe regions of the shoe, and participants wore IMUs on the lateral sides of both shanks. The angular velocity of the shank IMUs was used to detect instances of initial foot contact (IC) and final foot contact (FC), which were compared to reference values obtained from the marker trajectories. Results The detection method showed high recall, precision and F1 scores in different populations for both initial contacts and final contacts during straight-line walking (IC: recall $$=$$ = 100%, precision $$=$$ = 100%, F1 score $$=$$ = 100%; FC: recall $$=$$ = 100%, precision $$=$$ = 100%, F1 score $$=$$ = 100%), slalom walking (IC: recall $$=$$ = 100%, precision $$\ge$$ ≥ 99%, F1 score $$=$$ = 100%; FC: recall $$=$$ = 100%, precision $$\ge$$ ≥ 99%, F1 score $$=$$ = 100%), and turning (IC: recall $$\ge$$ ≥ 85%, precision $$\ge$$ ≥ 95%, F1 score $$\ge$$ ≥ 91%; FC: recall $$\ge$$ ≥ 84%, precision $$\ge$$ ≥ 95%, F1 score $$\ge$$ ≥ 89%). Conclusions Shank-mounted IMUs can be used to detect gait events during straight-line walking, slalom walking and turning. However, more false events were observed during turning and more events were missed during turning. For use in daily life we recommend identifying turning before extracting temporal gait parameters from identified gait events.

2021 ◽  
Author(s):  
Robbin Romijnders ◽  
Elke Warmerdam ◽  
Clint Hansen ◽  
Julius Welzel ◽  
Gerhard Schmidt ◽  
...  

Abstract Background: Identification of individual gait events is essential for clinical gait analysis, because it can be used for diagnostic purposes or tracking disease progression in neurological diseases such as Parkinson's disease. Previous research has shown that gait events can be detected from a shank-mounted inertial measurement unit (IMU), however detection performance was often evaluated only from straight-line walking. For use in daily life, the detection performance needs to be evaluated in curved walking and turning as well as in single-task and dual-task conditions. Methods: Participants (older adults, people with Parkinson's disease, or people who had suffered from a stroke) performed three different walking trials: 1) straight-line walking, 2) slalom walking, 3) Stroop-and-walk trial. An optical motion capture system was used a reference system. Markers were attached to the heel and toe regions of the shoe, and participants wore IMUs on the lateral sides of both shanks. The angular velocity of the shank IMUs was used to detect instances of initial foot contact (IC) and final foot contact (FC), which were compared to reference values obtained from the marker trajectories. Results: The detection method showed high recall, precision and F1 scores in different populations for both initial contacts and final contacts during straight-line walking (IC: recall = 100%, precision = 100%, F1 score = 100%; FC: recall = 100%, precision = 100%, F1 score = 100%), slalom walking (IC: recall = 100%,precision ≥ 99%, F1 score =100%; FC: recall = 100%, precision ≥ 99%, F1 score =100%), and turning (IC: recall ≥ 85%, precision ≥ 95%, F1 score ≥ 91%; FC: recall ≥ 84%, precision ≥ 95%, F1 score ≥ 89%). Conclusions: Shank-mounted IMUs can be used to detect gait events during straight-line walking, slalom walking and turning. However, more false events were observed during turning and more events were missed during turning. For use in daily life we recommend identifying turning before extracting temporal gait parameters from identified gait events.


2020 ◽  
Author(s):  
Robbin Romijnders ◽  
Elke Warmerdam ◽  
Clint Hansen ◽  
Julius Welzel ◽  
Gerhard Schmidt ◽  
...  

Abstract Background: Identication of individual gait events is essential for clinical gait analysis, because it can beused for diagnostic purposes or tracking disease progression in neurological diseases such as Parkinson'sdisease. Previous research has shown that gait events can be detected from a shank-mounted inertialmeasurement unit (IMU), however detection performance was often evaluated only from straight-line walking.For use in daily life, the detection performance needs to be evaluated in curved walking and turning as well asin single-task and dual-task conditions.Methods: Participants (older adults, people with Parkinson's disease, or people who had suered from astroke) performed three dierent walking trials: 1) straight-line walking, 2) slalom walking, 3) Stroop-and-walktrial. An optical motion capture system was used a reference system. Markers were attached to the heel andtoe regions of the shoe, and participants wore IMUs on the lateral sides of both shanks. The angular velocity ofthe shank IMUs was used to detect instances of initial foot contact (IC) and nal foot contact (FC), whichwere compared to reference values obtained from the marker trajectories.Results: The detection method showed high recall, precision and F1 scores in dierent populations for bothinitial contacts and nal contacts during straight-line walking (IC: recall = 100%, precision = 100%, F1 score= 100%; FC: recall = 100%, precision = 100%, F1 score = 100%), slalom walking (IC: recall = 100%,precision 99%, F1 score =100%; FC: recall = 100%, precision 99%, F1 score =100%), and turning (IC:recall 85%, precision 95%, F1 score 91%; FC: recall 84%, precision 95%, F1 score 89%).Conclusions: Shank-mounted IMUs can be used to detect gait events during straight-line walking, slalomwalking and turning. However, more false events were observed during turning and more events were missedduring turning. For use in daily life we recommend identifying turning before extracting temporal gaitparameters from identied gait events.


Author(s):  
Leticia Nardoni Marteli ◽  
Fabio Augusto Barbieri ◽  
Gabriel Gerizani ◽  
Érica Pereira das Neves ◽  
Luis Carlos Paschoarelli

People with Parkinson’s disease (PD) manipulate clothing as part of their daily life. To understand how deteriorating motor skills affect the performance of dressing/undressing activities, this study investigated performance in handling clothing fastening. Participants were distributed into two groups: older adults with PD and neurologically matched healthy individuals (control group). Coordination and usability were evaluated. The PD group demonstrated worse performance than the control group in usability for types of buttons, and this was affected more intensely by small compared with large fasteners. This study demonstrated the need for increased awareness by clothing companies to develop products that can promote independence.


2020 ◽  
Vol 75 (12) ◽  
pp. 2361-2370 ◽  
Author(s):  
Lynn Zhu ◽  
Christian Duval ◽  
Patrick Boissy ◽  
Manuel Montero-Odasso ◽  
Guangyong Zou ◽  
...  

Abstract Background Real-life community mobility (CM) measures for older adults, especially those with Parkinson’s disease (PD), are important tools when helping individuals maintain optimal function and quality of life. This is one of the first studies to compare an objective global positioning system (GPS) sensor and subjective self-report CM measures in an older clinical population. Methods Over 14 days, 54 people in Ontario, Canada with early to mid-stage PD (mean age = 67.5 ± 6.3 years; 47 men; 46 retired) wore a wireless inertial measurement unit with GPS (WIMU-GPS), and completed the Life Space Assessment and mobility diaries. We assessed the convergent validity, reliability and agreement on mobility outcomes using Spearman’s correlation, intraclass correlation coefficient, and Bland-Altman analyses, respectively. Results Convergent validity was attained by the WIMU-GPS for trip frequency (rs = .69, 95% confidence interval [CI] = 0.52–0.81) and duration outside (rs = .43, 95% CI = 0.18–0.62), but not for life space size (rs = .39, 95% CI = 0.14–0.60). The Life Space Assessment exhibited floor and ceiling effects. Moderate agreements were observed between WIMU-GPS and diary for trip frequency and duration (intraclass correlation coefficients = 0.71, 95% CI = 0.51–0.82; 0.67, 95% CI = 0.42–0.82, respectively). Disagreement was more common among nonretired individuals. Conclusions WIMU-GPS could replace diaries for trip frequency and duration assessments in older adults with PD. Both assessments are best used for retired persons. However, the Life Space Assessment may not reflect actual mobility.


Gerontology ◽  
2021 ◽  
pp. 1-7
Author(s):  
Ram kinker Mishra ◽  
Catherine Park ◽  
He Zhou ◽  
Bijan Najafi ◽  
T. Adam Thrasher

<b><i>Introduction:</i></b> Parkinson’s disease (PD) progressively impairs motor and cognitive performance. The current tools to detect decline in motor and cognitive functioning are often impractical for busy clinics and home settings. To address the gap, we designed an instrumented trail-making task (iTMT) based on a wearable sensor (worn on the shin) with interactive game-based software installed on a tablet. The iTMT test includes reaching to 5 indexed circles, a combination of numbers (1–3) and letters (A&amp;B) randomly positioned inside target circles, in a sequential order, which virtually appears on a screen kept in front of the participants, by rotating one’s ankle joint while standing and holding a chair for safety. By measuring time to complete iTMT task (iTMT time), iTMT enables quantifying cognitive-motor performance. <b><i>Purpose:</i></b> This study’s objective is to examine the feasibility of iTMT to detect early cognitive-motor decline in PDs. <b><i>Method:</i></b> Three groups of volunteers, including 14 cognitively normal (CN) older adults, 14 PDs, and 11 mild cognitive impaireds (MCI), were recruited. Participants completed MoCA, 20 m walking test, and 3 trials of iTMT. <b><i>Results:</i></b> All participants enabled to complete iTMT with &#x3c;3 min, indicating high feasibility. The average iTMT time for CN-Older, PD, and MCI participants were 20.9 ± 0.9 s, 32.3 ± 2.4 s, and 40.9 ± 4.5 s, respectively. After adjusting for age and education level, pairwise comparison suggested large effect sizes for iTMT between CN-older versus PD (Cohen’s <i>d</i> = 1.7, <i>p</i> = 0.024) and CN-older versus MCI (<i>d</i> = 1.57, <i>p</i> &#x3c; 0.01). Significant correlations were observed when comparing iTMT time with the gait speed (<i>r</i> = −0.4, <i>p</i> = 0.011) and MoCA score (<i>r</i> = −0.56, <i>p</i> &#x3c; 0.01). <b><i>Conclusion:</i></b> This study demonstrated the feasibility and early results supporting the potential application of iTMT to determine cognitive-motor and distinguishing individuals with MCI and PD from CN-older adults. Future studies are warranted to test the ability of iTMT to track its subtle changes over time.


2021 ◽  
Vol 22 (12) ◽  
pp. 6277
Author(s):  
Joanna A. Motyl ◽  
Joanna B. Strosznajder ◽  
Agnieszka Wencel ◽  
Robert P. Strosznajder

Molecular studies have provided increasing evidence that Parkinson’s disease (PD) is a protein conformational disease, where the spread of alpha-synuclein (ASN) pathology along the neuraxis correlates with clinical disease outcome. Pathogenic forms of ASN evoke oxidative stress (OS), neuroinflammation, and protein alterations in neighboring cells, thereby intensifying ASN toxicity, neurodegeneration, and neuronal death. A number of evidence suggest that homeostasis between bioactive sphingolipids with opposing function—e.g., sphingosine-1-phosphate (S1P) and ceramide—is essential in pro-survival signaling and cell defense against OS. In contrast, imbalance of the “sphingolipid biostat” favoring pro-oxidative/pro-apoptotic ceramide-mediated changes have been indicated in PD and other neurodegenerative disorders. Therefore, we focused on the role of sphingolipid alterations in ASN burden, as well as in a vast range of its neurotoxic effects. Sphingolipid homeostasis is principally directed by sphingosine kinases (SphKs), which synthesize S1P—a potent lipid mediator regulating cell fate and inflammatory response—making SphK/S1P signaling an essential pharmacological target. A growing number of studies have shown that S1P receptor modulators, and agonists are promising protectants in several neurological diseases. This review demonstrates the relationship between ASN toxicity and alteration of SphK-dependent S1P signaling in OS, neuroinflammation, and neuronal death. Moreover, we discuss the S1P receptor-mediated pathways as a novel promising therapeutic approach in PD.


Sign in / Sign up

Export Citation Format

Share Document