Peperite formed by lava flows over sediments: An example from the central Paraná Continental Flood Basalts, Brazil

2007 ◽  
Vol 159 (4) ◽  
pp. 343-354 ◽  
Author(s):  
Breno L. Waichel ◽  
Evandro F. de Lima ◽  
Carlos A. Sommer ◽  
Romulo Lubachesky
Solid Earth ◽  
2015 ◽  
Vol 6 (1) ◽  
pp. 227-241 ◽  
Author(s):  
F. Braz Machado ◽  
E. Reis Viana Rocha-Júnior ◽  
L. Soares Marques ◽  
A. J. Ranalli Nardy

Abstract. There has been little research on volcanological aspects of Paraná continental flood basalts (PCFBs), and all investigations have mainly been concentrated on the internal portions of the lava flows. Thus, this study describes for the first time morphological aspects of lava flows and structural characteristics caused by lava–sediment interaction in the northwestern PCFB province (NW-PCFB). Early Cretaceous (134 to 132 Ma) tholeiitic rocks of the PCFB were emplaced on a large intracratonic Paleozoic sedimentary basin (Paraná Basin), mainly covering dry eolian sandstones (Botucatu Formation). As this sedimentary unit is overlain by the basic lava flows of the PCFB, the interaction of lavas and unconsolidated sediments resulted in the generation of fluidal peperites. This aspect is significant because it shows that restricted wet environments should have existed in the Botucatu desert. The peperite zones of the NW-PCFB are associated with compound pahoehoe-type (P-type) flows and are always related to the first volcanic pulses. These flows have dispersed vesicles and sand-filled cracks in their base and top borders, as well as the presence of interlayered sandstones with irregular contacts and varied thicknesses. It is remarkable that, to the best of current knowledge, only in this area of the whole PCFB did the volcanic activity start with low-Ti basalt flows of Ribeira type (TiO2 < 2.3 wt%), which are scarce in the province.


2009 ◽  
Vol 50 (7) ◽  
pp. 1377-1403 ◽  
Author(s):  
L. Beccaluva ◽  
G. Bianchini ◽  
C. Natali ◽  
F. Siena

Minerals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 351 ◽  
Author(s):  
Berthold Ottens ◽  
Jens Götze ◽  
Ralf Schuster ◽  
Kurt Krenn ◽  
Christoph Hauzenberger ◽  
...  

Flood basalts of the Deccan Volcanic Province erupted between about 67.5 to 60.5 Ma ago and reached a thickness of up to 3500 m. The main part consists of compound and simple lava flows with a tholeiitic composition erupted within 500,000 years at about 65 Ma. Within the compound lava flows, vesicles and cavities are frequent. They are filled by secondary minerals partly of well development and large size. This study presents data on the secondary mineralization including detailed field descriptions, optical, cathodoluminescence and SEM microscopy, X-ray diffractometry, fluid inclusions, C and O isotope analyses, and Rb-Sr and K-Ar geochronology. The investigations indicate a multistage precipitation sequence with three main stages. During stage I clay minerals and subsurface filamentous fabrics (SFFs), of probably biogenic origin, formed after the lava flows cooled down near to the Earth’s surface. In stage II, first an assemblage of calcite (I) and zeolite (I) (including mordenite, heulandite, and stilbite) as well as plagioclase was overgrown by chalcedony, and finally a second calcite (II) and zeolite (II) generation developed by burial metamorphism by subsequent lava flows. Stage III is characterized by precipitation of a third calcite (III) generation together with powellite and apophyllite from late hydrothermal fluids. Rb-Sr and K-Ar ages of apophyllite indicate a large time span for stage III. Apophyllite formed within different time intervals from the Paleogene to the early Miocene even within individual lava flows at certain localities. From the Savda/Jalgaon quarry complex, ages cluster at 44–48 Ma and 25–28 Ma, whereas those from the Nashik area are 55–58 Ma and 21–23 Ma, respectively.


Lithos ◽  
2020 ◽  
Vol 364-365 ◽  
pp. 105519
Author(s):  
E.R.V. Rocha-Júnior ◽  
L.S. Marques ◽  
M. Babinski ◽  
F.B. Machado ◽  
L.A. Petronilho ◽  
...  

1989 ◽  
Vol 26 (3) ◽  
pp. 534-543 ◽  
Author(s):  
A. J. Hogg ◽  
J. J. Fawcett ◽  
J. Gittins ◽  
M. P. Gorton

The Prinsen of Wales Bjerge (PWB), part of the Tertiary volcanic province of East Greenland, consists of tholeiitic basalts overlain by alkalic basalts that were erupted 100–150 km west of the original axis of continental rifting and active ocean-floor development during the creation of the North Atlantic Ocean. They have many features of continental flood basalts but are somewhat enriched in Fe and in Ti relative to Fe and have slightly lower Al2O3. They have slight enrichments in the light rare-earth elements (La/Yb = 3–4). A nunatak within the PWB displays four cycles of tholeiitic basalt, each about 50 m thick, which are defined by trace-element variations (Ni, Cr, Sr, Zr, and Zr/Y). In three of the four cycles the lowermost flows are the most highly differentiated, and successive flows are increasingly primitive. These changes are thought to be the result of frequent injection of primitive, mantle-derived tholeiitic magma into small crustal magma chambers that contain evolved tholeiitic magma. The resultant mixing and expulsion of hybrid magma produce flows of small volume (0.01–0.03 km3) that display increasingly primitive character upward within each cycle (increasing Mg# and decreasing content of incompatible elements). This process is expected to be more efficient in small reservoirs than in the very large magma chambers that have been invoked by previous exponents of the differentiation–replenishment hypothesis. We suggest that cyclical volcanism in areas well back from the line of active rifting may be more common than is realized and is controlled by the fractionation–magma-replenishment process operating in numerous small reservoirs in an extensively fractured continental crust.


Sign in / Sign up

Export Citation Format

Share Document