Ground deformation patterns at White Island volcano (New Zealand) between 1967 and 2008 deduced from levelling data

2009 ◽  
Vol 181 (3-4) ◽  
pp. 207-218 ◽  
Author(s):  
Aline Peltier ◽  
Bradley Scott ◽  
Tony Hurst
2014 ◽  
Vol 41 (1) ◽  
pp. 1-16 ◽  
Author(s):  
B. J. Gill

In December 1884 Charles Francis Adams (1857–1893) left Illinois, USA, by train for San Francisco and crossed the Pacific by ship to work as taxidermist at Auckland Museum, New Zealand, until February 1887. He then went to Borneo via several New Zealand ports, Melbourne and Batavia (Jakarta). This paper concerns a diary by Adams that gives a daily account of his trip to Auckland and the first six months of his employment (from January to July 1885). In this period Adams set up a workshop and diligently prepared specimens (at least 124 birds, fish, reptiles and marine invertebrates). The diary continues with three reports of trips Adams made from Auckland to Cuvier Island (November 1886), Karewa Island (December 1886) and White Island (date not stated), which are important early descriptive accounts of these small offshore islands. Events after leaving Auckland are covered discontinuously and the diary ends with part of the ship's passage through the Dutch East Indies (Indonesia), apparently in April 1887. Adams's diary is important in giving a detailed account of a taxidermist's working life, and in helping to document the early years of Auckland Museum's occupation of the Princes Street building.


2005 ◽  
Vol 81 (2) ◽  
pp. 146-178 ◽  
Author(s):  
Vicki Moon ◽  
Jennifer Bradshaw ◽  
Richard Smith ◽  
Willem de Lange
Keyword(s):  

2018 ◽  
Vol 482 ◽  
pp. 193-200 ◽  
Author(s):  
Jürgen W. Neuberg ◽  
Amy S.D. Collinson ◽  
Patricia A. Mothes ◽  
Mario C. Ruiz ◽  
Santiago Aguaiza

1886 ◽  
Vol 3 (9) ◽  
pp. 398-402

The “Lake District” of the North Island is too well known to all students of volcanic phenomena, especially of that branch comprising hydrothermal action, to need a detailed description. It will be sufficient to say that it forms a belt, crossing the island from north-east to south-west, and forms a portion of the Middle and Upper Waikato Basins of Hochstetter. The district has been recently brought into prominent notice by the disastrous eruption of Mount Tarawera, very full accounts of which have appeared in New Zealand papers lately received. The eruption commenced in the early morning of Thursday, June 10th, but premonitory symptoms showed themselves a few days before in a tidal wave, three feet high, on Lake Tarawera, great uneasiness of the springs at Ohinemutu, and the reported appearance of smoke issuing from Euapehu, the highest of the great trachytic cones at the extreme south-westerly end of the system. The belt of activity extends from Mount Tongariro at the one end to White Island, in the Bay of Plenty, at the other, a distance of about 150 miles. White Island has undergone considerable change from volcanic action during recent years, and Tongariro was last in eruption in July, 1871; whilst its snowclad sister cone Euapehu has never manifested volcanic action within the historic period until now. This wide zone in the centre of the North Island has, ever since the arrival of the Maoris, been the scene of such extraordinary phenomena, that it has of late been the resort of visitors from all quarters of the globe.


2017 ◽  
Vol 79 (10) ◽  
Author(s):  
C. Ian Schipper ◽  
Céline Mandon ◽  
Anton Maksimenko ◽  
Jonathan M. Castro ◽  
Chris E. Conway ◽  
...  

2019 ◽  
Vol 71 (1) ◽  
Author(s):  
Geoff Kilgour ◽  
Stephanie Gates ◽  
Ben Kennedy ◽  
Aaron Farquhar ◽  
Ame McSporran ◽  
...  

2020 ◽  
Vol 8 (2) ◽  
pp. 351-366
Author(s):  
Catherine Reid ◽  
John Begg ◽  
Vasiliki Mouslopoulou ◽  
Onno Oncken ◽  
Andrew Nicol ◽  
...  

Abstract. The 2016 Mw=7.8 Kaikōura earthquake (South Island, New Zealand) caused widespread complex ground deformation, including significant coastal uplift of rocky shorelines. This coastal deformation is used here to develop a new methodology, in which the upper living limits of intertidal marine biota have been calibrated against tide-gauge records to quantitatively constrain pre-deformation biota living position relative to sea level. This living position is then applied to measure coseismic uplift at three other locations along the Kaikōura coast. We then assess how coseismic uplift derived using this calibrated biological method compares to that measured using other methods, such as light detection and ranging (lidar) and strong-motion data, as well as non-calibrated biological methods at the same localities. The results show that where biological data are collected by a real-time kinematic (RTK) global navigation satellite system (GNSS) in sheltered locations, this new tide-gauge calibration method estimates tectonic uplift with an accuracy of ±≤0.07 m in the vicinity of the tide gauge and an overall mean accuracy of ±0.10 m or 10 % compared to differential lidar methods for all locations. Sites exposed to high wave wash, or data collected by tape measure, are more likely to show higher uplift results. Tectonic uplift estimates derived using predictive tidal charts produce overall higher uplift estimates in comparison to tide-gauge-calibrated and instrumental methods, with mean uplift results 0.21 m or 20 % higher than lidar results. This low-tech methodology can, however, produce uplift results that are broadly consistent with instrumental methodologies and may be applied with confidence in remote locations where lidar or local tide-gauge measurements are not available.


Sign in / Sign up

Export Citation Format

Share Document