In-situ pilot-scale passive biochemical reactors for Ni removal from saline mine drainage under subarctic climate conditions

2021 ◽  
Vol 41 ◽  
pp. 102062
Author(s):  
Mohamed-Ali El Kilani ◽  
Marouen Jouini ◽  
Tsiverihasina V. Rakotonimaro ◽  
Carmen Mihaela Neculita ◽  
John W. Molson ◽  
...  
2011 ◽  
Vol 28 (8) ◽  
pp. 563-572 ◽  
Author(s):  
Sage R. Hiibel ◽  
Luciana P. Pereyra ◽  
Maria V. Riquelme Breazeal ◽  
David J. Reisman ◽  
Kenneth F. Reardon ◽  
...  

2009 ◽  
Vol 71-73 ◽  
pp. 577-580 ◽  
Author(s):  
Maylin Almendras ◽  
J.V. Wiertz ◽  
R. Chamy

The main environmental problems associated with the mining activities are related to the production of large amounts of wastes; Different pathways are responsible for heavy metals dispersion, by air due to wind action, by water mediated by acid mine drainage and erosion, and the metals could be mobilized in the soil by different transport mechanisms. Different remediation alternatives have been studied and reported in literature. In situ stabilization is a cheaper method. The heavy metals stabilization enables the decrease of metal mobility, reactivity and toxicity in the soil, decreasing heavy metals availability and phytoavailability. Sulphate reducing bacteria (SRB) have been successfully utilized in groundwater bioprecipitation of heavy metals. In this study, this biological agent has been used in the immobilization of heavy metal in the subsurface of the soil due to its dissimilative metabolism. SRB produces hydrogen sulfide that reacts with soluble metals present in the media, generating as final product low soluble metal compounds (metal sulfides). The bio-stabilization was studied at pilot scale to determine the stabilization efficiency using biological agent, SRB. The metals studied were Fe, Cu, Pb and Zn in the contaminated smelter soil. Bioaugmentation and biomagnification were applied. After 4 months, the metal stabilization efficiency was determined by leaching with acid solution at different pH to stimulate the metal mobility. The remediation pilot scale system showed that copper, lead and iron were much more stable at pH 3.0, with only 3.7% and 1% of total metal eluted, and compared with the system without biological agent. In the case of zinc, the elution was similar with or without remediation. The metal stabilization using biological agent was successful in the contaminated smelter soil and these results are promising antecedents for full scale in situ remediation strategy.


2000 ◽  
Vol 42 (5-6) ◽  
pp. 371-376 ◽  
Author(s):  
J.A. Puhakka ◽  
K.T. Järvinen ◽  
J.H. Langwaldt ◽  
E.S. Melin ◽  
M.K. Männistö ◽  
...  

This paper reviews ten years of research on on-site and in situ bioremediation of chlorophenol contaminated groundwater. Laboratory experiments on the development of a high-rate, fluidized-bed process resulted in a full-scale, pump-and-treat application which has operated for several years. The system operates at ambient groundwater temperature of 7 to 9°C at 2.7 d hydraulic retention time and chlorophenol removal efficiencies of 98.5 to 99.9%. The microbial ecology studies of the contaminated aquifer revealed a diverse chlorophenol-degrading community. In situ biodegradation of chlorophenols is controlled by oxygen availability, only. Laboratory and pilot-scale experiments showed the potential for in situ aquifer bioremediation with iron oxidation and precipitation as a potential problem.


Author(s):  
Arndt Wiessner ◽  
Jochen A. Müller ◽  
Peter Kuschk ◽  
Uwe Kappelmeyer ◽  
Matthias Kästner ◽  
...  

The large scale of the contamination by the former carbo-chemical industry in Germany requires new and often interdisciplinary approaches for performing an economically sustainable remediation. For example, a highly toxic and dark-colored phenolic wastewater from a lignite pyrolysis factory was filled into a former open-cast pit, forming a large wastewater disposal pond. This caused an extensive environmental pollution, calling for an ecologically and economically acceptable strategy for remediation. Laboratory-scale investigations and pilot-scale tests were carried out. The result was the development of a strategy for an implementation of full-scale enhanced in situ natural attenuation on the basis of separate habitats in a meromictic pond. Long-term monitoring of the chemical and biological dynamics of the pond demonstrates the metamorphosis of a former highly polluted industrial waste deposition into a nature-integrated ecosystem with reduced danger for the environment, and confirmed the strategy for the chosen remediation management.


Author(s):  
Ka Yu Cheng ◽  
Caroline Rubina Acuña ◽  
Anna H. Kaksonen ◽  
Graeme Esslemont ◽  
Grant B. Douglas

2020 ◽  
Vol 58 (5A) ◽  
pp. 22
Author(s):  
Dao Thanh Son ◽  
Van Tai Nguyen ◽  
Thuy Nhu Quynh Vo ◽  
Vinh Quang Tran ◽  
Thi My Chi Vo ◽  
...  

Heavy metal contamination is among the globally environmental and ecological concerns. In this study we assessed the development of the two green algae Schroederia setigera and Selenastrum bibraianum under exposures to 5 – 200 µg/L of Ni, Zn, and Cd in the laboratory conditions. Heavy metal removal efficiency of S. setigera was also tested in 537 µg Ni/L, 734 µg Zn/L, and 858 µg Cd/L. We found that the exposures with these heavy metals caused inhibitory on the growth of S. bibraianum. The S. bibraianum cell size in the 200 µg Zn/L treatment was around two times smaller than the control. However, Zn and Cd at the concentration of 200 µg/L did not inhibit the growth of S. setigera over 18 days of exposure. The S. setigera also grew well during 8 days exposed to Ni at the same concentration. Besides, the alga S. setigera could remove 66% of Zn, 18% of Cd and 12% of Ni out of the test medium after 16 days of incubation. The Vietnam Technical Regulation related to metals should be considered for ecological protection. We recommend to test the metal removal by the alga S. setigera at pilot scale prior to apply it in situ


Sign in / Sign up

Export Citation Format

Share Document