scholarly journals Growth and metal removal efficiency of the green algae Schroederia setigera and Selenastrum bibraianum exposed to nickel, zinc and cadmium

2020 ◽  
Vol 58 (5A) ◽  
pp. 22
Author(s):  
Dao Thanh Son ◽  
Van Tai Nguyen ◽  
Thuy Nhu Quynh Vo ◽  
Vinh Quang Tran ◽  
Thi My Chi Vo ◽  
...  

Heavy metal contamination is among the globally environmental and ecological concerns. In this study we assessed the development of the two green algae Schroederia setigera and Selenastrum bibraianum under exposures to 5 – 200 µg/L of Ni, Zn, and Cd in the laboratory conditions. Heavy metal removal efficiency of S. setigera was also tested in 537 µg Ni/L, 734 µg Zn/L, and 858 µg Cd/L. We found that the exposures with these heavy metals caused inhibitory on the growth of S. bibraianum. The S. bibraianum cell size in the 200 µg Zn/L treatment was around two times smaller than the control. However, Zn and Cd at the concentration of 200 µg/L did not inhibit the growth of S. setigera over 18 days of exposure. The S. setigera also grew well during 8 days exposed to Ni at the same concentration. Besides, the alga S. setigera could remove 66% of Zn, 18% of Cd and 12% of Ni out of the test medium after 16 days of incubation. The Vietnam Technical Regulation related to metals should be considered for ecological protection. We recommend to test the metal removal by the alga S. setigera at pilot scale prior to apply it in situ

2012 ◽  
Vol 518-523 ◽  
pp. 361-368 ◽  
Author(s):  
Rong Bing Fu ◽  
Xin Xing Liu ◽  
Fang Liu ◽  
Jin Ma ◽  
Yu Mei Ma ◽  
...  

A new permeable reactive composite electrode (PRCE) attached with a permeable reactive layer (PRL) of Fe0 and zeolite has been developed for soil pH control and the improved removal efficiency of heavy metal ions (Cd, Ni, Pb, Cu) from soil in electrokinetic remediation process. The effects of different composite electrodes on pH control and heavy metal removal efficiency were studied, and changes in the forms of heavy metals moved onto the electrodes were analyzed. The results showed that with acidic/alkaline zeolite added and renewed in time, the composite electrodes could effectively neutralize and capture H+ and OH- produced from electrolysis of the anolyte and catholyte, avoiding or delaying the formation of acidic/alkaline front in tested soil, preventing premature precipitation of heavy metal ions and over-acidification of soil, and thus significantly improved the heavy metal removal efficiency. Fe0 in composite electrodes could deoxidize and stabilize the heavy metal ions. After that capture and immobilization of the pollutants were achieved. The results also showed that, using "Fe0 + zeolite" PRCE in the cathode with timely renewal, after 15-day remediation with a DC voltage of 1.5 V/cm, the total removal rates of Cd, Pb, Cu and Ni were 49.4%, 47.1%, 36.7% and 39.2%, respectively.


2009 ◽  
Vol 620-622 ◽  
pp. 125-128 ◽  
Author(s):  
Sung Won Kang ◽  
Seog Ku Kim ◽  
Sang Leen Yun ◽  
Hye Cheol Oh ◽  
Jae Hwan Ahn

This research was conducted to investigate the application of the novel upflow-type filtration device using hydrophobia media made of expanded polypropylene (EPP) from driveways site. The higher level of motorway-derived heavy metal contamination exists in stormwater runoff from a road section and the heavy metal levels were higher than the regulated Korean environmental guideline in lake and river. For Cd, Cr, Cu, Pb and Zn, the influent event mean concentrations (EMCs) during 8 storm periods were 2.75, 37.3, 90.5, 118.5 and 546.5 µg/L, respectively. The novel upflow-type filtration device with main mechanism of filtration and adsorption showed removal (>91%, >93%, >85%, >91% and >80%) of the studied heavy metals (Cd, Cr, Cu, Pb and Zn) and differences of medians of removal efficiencies among heavy metals were not statistically signficant by Kruskal-Wallis test (p>0.05) during 8 storm events. It is found that EPP media is very effective at the removal of the heavy metals, and the magnitude of heavy metal removal in a decreasing order is Cr, Cd, Pb, Cu and Zn.


2012 ◽  
Vol 468-471 ◽  
pp. 2882-2890 ◽  
Author(s):  
R. H. Al Anbari ◽  
S. M. Alfatlawi ◽  
J. H. Albaidhani

Heavy metal removal by electrocoagulation using iron electrodes material was investigated in this paper. Several working parameters, such as pH, current density and heavy metal ions concentration were studied in an attempt to achieve a higher removal capacity. A simple and efficient treatment process for removal of heavy metals is essentially necessary. The performance of continuous flow electrocoagulation system, with reactor consists of a ladder series of twelve electrolytic cells, each cell containing stainless steel cathode and iron anode. The treatment of synthetic solutions containing Zn 2+,Cu 2+,Ni 2+,Cr 3+,Cd 2+ and Co 2+ ,has been investigated. Results showed that iron is very effective as sacrificial electrode material for heavy metals removal efficiency and cost points. Also it was concluded that the chromium has lower efficient removal as compared to zinc, copper and nickel. At the same time cadmium and cobalt have minimum removal efficiency.


2007 ◽  
Vol 56 (2) ◽  
pp. 111-120 ◽  
Author(s):  
G. Andreottola ◽  
M. Cadonna ◽  
P. Foladori ◽  
G. Gatti ◽  
F. Lorenzi ◽  
...  

In most cases of winery effluent, the heavy metal content, especially zinc (Zn) and copper (Cu), does not meet the limits for the discharge as imposed by the most restrictive regulations at international level (0.4 mgCu/L and 1.0 mgZn/L in the Italian regulations). An alternative for the reduction of Cu and Zn is the on-site pre-treatment of wastewater at the winery in order to meet the limits for the discharge into the public sewerage. The purpose of this study is to evaluate the effectiveness of a pre-treatment based on chemical precipitation with chelating agents (TMT: 2,4,6-trimercaptotriazine), for the reduction of Cu and Zn from raw winery wastewater. The chemical precipitation was optimised at lab-scale through jar tests in order to evaluate the optimal dosages. An average dosage equal to 0.84 mL of TMT (15%) for 1 mg of Cu removed was estimated. Furthermore, the efficiency of the on-site chemical pre-treatment was investigated at pilot scale. The results confirmed the feasibility of using TMT treatment for the reduction of Cu and Zn in order to meet the limits for discharge into the sewerage. Contextually to the removal of heavy metals, the chemical pre-treatment allowed us to obtain the reduction of particulate COD and TSS. Finally, the costs for the operation and the management of the on-site pre-treatment were evaluated.


2021 ◽  
Author(s):  
Jun Nie

Removal of heavy metal contaminants from sewage sludge is a necessity before it is used as an agricultural fertilizer (biosolid), due to environmental concerns and municipal, provincial and federal regulations. The bioleaching method is recommended as an economical and effective process for the removal of heavy metals from the Ashbridges Bay Treatment Plant (ABTP) sludge, some of them with concentrations exceeding the recommended level by the Ontario Ministry of Agriculture, Food, and Rural Affairs guidelines. The Gram-negative thiobacilli is a group of organisms with physiological and morphological similarity and grows by oxidizing ferrous ion and reduced sulphur compounds. One species of thiobacillus, T. ferrooxidan , was recommended as an effective bacterium for the heavy metal removal from sewage sludge. This research involved the incubation of adapted sludge using fresh raw digested sludge and activated sludge of ABTP. Using adapted sludge for the bioleaching process, the method was tested in a continuously stirred tank reactor (CSTR) in combination with a series of jar tests. Results showed that the metal removal efficiency increases with decreasing pH, and the solids content does not affect the removal efficiency of cupper and zinc very much during short term jar test. The results from the long-term (20-day) CSTR test demonstrated that the high T ferrooxians-contained adapted sludge could remove copper from the sewage sludge of ABTP very effectively, by as much as 79.2%. In comparison, the simultaneous removal efficiency of zinc and cadmium were also studied for the same process and, they are 82.0% and 83.9% respectively. The TSS degradation constant rate during the 20 days' bioleaching was found to be 0.0522 day -1. It is concluded that Ontario should continue to apply sludge to agricultural land, as sludge is an economic alternative, promotes recycling of resources, and is a valuable fertilizer. However, the toxic metals in sludge should be removed from sewage sludge using the bioleaching process to recommended level before it is disposed as a fertilizer for land application.


Sign in / Sign up

Export Citation Format

Share Document