Potential of ceramic ultrafiltration membranes for the treatment of anionic surfactants in laundry wastewater for greywater reuse

2021 ◽  
Vol 44 ◽  
pp. 102373
Author(s):  
Soyoun Kim ◽  
Chanhyuk Park
Desalination ◽  
2004 ◽  
Vol 162 ◽  
pp. 33-40 ◽  
Author(s):  
Izabela Kowalska ◽  
Małgorzata Kabsch-Korbutowicz ◽  
Katarzyna Majewska-Nowak ◽  
Tomasz Winnicki

Author(s):  
E. Naranjo

Equilibrium vesicles, those which are the stable form of aggregation and form spontaneously on mixing surfactant with water, have never been demonstrated in single component bilayers and only rarely in lipid or surfactant mixtures. Designing a simple and general method for producing spontaneous and stable vesicles depends on a better understanding of the thermodynamics of aggregation, the interplay of intermolecular forces in surfactants, and an efficient way of doing structural characterization in dynamic systems.


2002 ◽  
Vol 2 (5-6) ◽  
pp. 307-311
Author(s):  
P. Côté ◽  
J. Cadera ◽  
N. Adams ◽  
G. Best

Membrane filtration has become the preferred alternative to conventional technology to remove water-borne pathogens in the preparation of drinking water. This paper presents the integrity monitoring and maintenance options for the ZeeWeed® immersed membrane. Results from two versions of air-based tests, a pressure decay test and a vacuum decay test are presented and shown to be conservative when compared to challenge results from independent studies.


2011 ◽  
Vol 11 (4) ◽  
pp. 481-489
Author(s):  
S. Krause ◽  
A. Obermayer

The public drinking water supply of southern Germany is characterized by a rather decentralized network. Due to the hydrogeological setting in these parts of Germany many of the small water works with an average capacity of 50 m3/h have to treat raw water extracted from karstic or cliffy aquifers. These raw waters tend to be contaminated with particles and pathogens acquired during snowmelt or after strong rainfalls. In the last decade ultrafiltration has become the technology of choice for the removal of the aforementioned contaminants. Flux decline caused by unanticipated membrane fouling is the main limitation for the application of ultrafiltration membranes. This paper describes how membrane fouling phenomena can be predicted by using a statistical approach based on data from large scale filtration systems in combination with field and lab experiments on raw water quality and membrane performance. The data defines water quality and respective fouling phenomena both in technical scale filtration plants and in lab experiments of eleven different raw waters. The method described here is more economically feasible for small water works when compared to typical pilot experiments that are used for high capacity water works.


1986 ◽  
Vol 51 (3) ◽  
pp. 539-544 ◽  
Author(s):  
Hans-Hartmut Schwarz ◽  
Vlastimil Kůdela ◽  
Jaromír Lukáš ◽  
Jiří Vacík ◽  
Volker Gröbe

In the pressure driven process the performance of membranes for ultrafiltration can be changed by incorporating charged groups into the membranes. sulfonation of polysulfone membranes the membrane potential is varied. On interaction of the negatively charged membrane with positively or negatively charged protein molecules the formation of a concentration polarization gel layer proceeds at different rate. Thus, the performance of the membrane can be controlled by the membrane potential. The dependence of the performance on the potential is discussed and procedures for membrane cleaning are suggested.


Sign in / Sign up

Export Citation Format

Share Document