scholarly journals Aquaporin-1 Variants: A step further towards precise prescription in Peritoneal Dialysis?

Author(s):  
Osama El Shamy ◽  
T. Alp Ikizler
1996 ◽  
Vol 271 (6) ◽  
pp. H2254-H2262 ◽  
Author(s):  
O. Carlsson ◽  
S. Nielsen ◽  
el-R. Zakaria ◽  
B. Rippe

During peritoneal dialysis (PD), a major portion of the osmotically induced water transport to the peritoneum can be predicted to occur through endothelial water-selective channels. Aquaporin-1 (AQP-1) has recently been recognized as the molecular correlate to such channels. Aquaporins can be inhibited by mercurials. In the present study, HgCl2 was applied locally to the peritoneal cavity in rats after short-term tissue fixation, used to protect the tissues from HgCl2 damage. Dianeal (3.86%) was employed as dialysis fluid, 125I-albumin as an intraperitoneal volume marker, and 51Cr-EDTA (constantly infused intravenously) to assess peritoneal small-solute permeability characteristics. Immunocytochemistry and immunoelectron microscopy revealed abundant AQP-1 labeling in capillary endothelium in peritoneal tissues, representing sites for HgCl2 inhibition of water transport. HgCl2 treatment reduced water flow and inhibited the sieving of Na+ without causing any untoward changes in microvascular permeability, compared with that of fixed control rats, in which the peritoneal cavity was exposed to tissue fixation alone. In fixed control rats, the mean intraperitoneal volume (IPV) increased from 20.5 +/- 0.15 to 25.0 +/- 0.52 ml in 60 min, whereas in the HgCl2-treated rats, the increment was only from 20.7 +/- 0.23 to 23.5 +/- 0.4 ml. In fixed control rats, the dialysate Na+ fell from 135.3 +/- 0.97 to 131.3 +/- 1.72 mM, whereas in the HgCl2-treated rats the dialysate Na+ concentration remained unchanged between 0 and 40 min, further supporting that water channels had been blocked. Computer simulations of peritoneal transport were compatible with a 66% inhibition of water flow through aquaporins. The observed HgCl2 inhibition of transcellular water channels strongly indicates a critical role of aquaporins in PD and provides evidence that water channels are crucial in transendothelial water transport when driven by crystalloid osmosis.


2021 ◽  
Vol 22 (22) ◽  
pp. 12535
Author(s):  
Francesca Piccapane ◽  
Andrea Gerbino ◽  
Monica Carmosino ◽  
Serena Milano ◽  
Arduino Arduini ◽  
...  

We previously showed that mesothelial cells in human peritoneum express the water channel aquaporin 1 (AQP1) at the plasma membrane, suggesting that, although in a non-physiological context, it may facilitate osmotic water exchange during peritoneal dialysis (PD). According to the three-pore model that predicts the transport of water during PD, the endothelium of peritoneal capillaries is the major limiting barrier to water transport across peritoneum, assuming the functional role of the mesothelium, as a semipermeable barrier, to be negligible. We hypothesized that an intact mesothelial layer is poorly permeable to water unless AQP1 is expressed at the plasma membrane. To demonstrate that, we characterized an immortalized cell line of human mesothelium (HMC) and measured the osmotically-driven transmesothelial water flux in the absence or in the presence of AQP1. The presence of tight junctions between HMC was investigated by immunofluorescence. Bioelectrical parameters of HMC monolayers were studied by Ussing Chambers and transepithelial water transport was investigated by an electrophysiological approach based on measurements of TEA+ dilution in the apical bathing solution, through TEA+-sensitive microelectrodes. HMCs express Zo-1 and occludin at the tight junctions and a transepithelial vectorial Na+ transport. Real-time transmesothelial water flux, in response to an increase of osmolarity in the apical solution, indicated that, in the presence of AQP1, the rate of TEA+ dilution was up to four-fold higher than in its absence. Of note, we confirmed our data in isolated mouse mesentery patches, where we measured an AQP1-dependent transmesothelial osmotic water transport. These results suggest that the mesothelium may represent an additional selective barrier regulating water transport in PD through functional expression of the water channel AQP1.


1999 ◽  
Vol 33 (2) ◽  
pp. 383-388 ◽  
Author(s):  
Eric Goffin ◽  
Sophie Combet ◽  
François Jamar ◽  
Jean-Pierre Cosyns ◽  
Olivier Devuyst

2003 ◽  
Vol 23 (2_suppl) ◽  
pp. 20-25 ◽  
Author(s):  
Kar Neng Lai ◽  
Man Fai Lam ◽  
Joseph C. Leung

The aquaporins (AQPs) constitute a large family of water channels that play a part in transcellular water movement in many tissues. They are particularly abundant and important in the kidney and the lung. Derangement of AQP structure or function leads to a variety of water-balance disorders. Aquaporin-1 (AQP1) is constitutively expressed in the endothelial cells of the capillaries and venules that provide the ultrasmall pores predicted by the three-pore model of water movement during peritoneal dialysis. The ultrasmall pores are critical for ultrafiltration. In addition, AQP1 and AQP3 are constitutively expressed in peritoneal mesothelial cells. The expression of those AQPs is upregulated by hyperosmolality. Reduced expression or function of AQP1 may be responsible for some cases of ultrafiltration failure, but further evidence is required to establish that link.


2004 ◽  
Vol 44 (1) ◽  
pp. 146-154 ◽  
Author(s):  
Gerrit Schoenicke ◽  
Roman Diamant ◽  
Andreas Donner ◽  
Ansgar Roehrborn ◽  
Bernd Grabensee ◽  
...  

2010 ◽  
Vol 30 (2) ◽  
pp. 135-141 ◽  
Author(s):  
Olivier Devuyst ◽  
Andrea J. Yool

Peritoneal dialysis involves diffusive and convective transport and osmosis through the highly vascularized peritoneal membrane. Several lines of evidence have demonstrated that the water channel aquaporin-1 (AQP1) corresponds to the ultrasmall pore predicted by the model of peritoneal transport. Proof-of-principle studies have shown that upregulation of the expression of AQP1 in peritoneal capillaries results in increased water permeability and ultrafiltration, without affecting the osmotic gradient or small solute permeability. Conversely, studies in Aqp1 mice have shown that haplo-insufficiency for AQP1 results in significant attenuation of water transport. Recent studies have demonstrated that AQP1 is involved in the migration of different cell types, including endothelial cells. In parallel, chemical screening has identified lead compounds that could act as antagonists or agonists of AQPs, with description of putative binding sites and potential mechanisms of gating the water channel. By modulating water transport, these pharmacological agents could have clinically relevant effects in targeting specific tissues or disease states.


2006 ◽  
Vol 69 (9) ◽  
pp. 1518-1525 ◽  
Author(s):  
J. Ni ◽  
J.-M. Verbavatz ◽  
A. Rippe ◽  
I. Boisdé ◽  
P. Moulin ◽  
...  

Cells ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 330 ◽  
Author(s):  
Simone Corciulo ◽  
Maria Celeste Nicoletti ◽  
Lisa Mastrofrancesco ◽  
Serena Milano ◽  
Maria Mastrodonato ◽  
...  

The water channel Aquaporin 1 (AQP1) plays a fundamental role in water ultrafiltration during peritoneal dialysis (PD) and its reduced expression or function may be responsible for ultrafiltration failure (UFF). In humans, AQP1 is expressed in the endothelium of the peritoneal capillaries but its expression in mesothelial cells (MC) and its functional role in PD is still being debated. Here, we studied a cohort of 30 patients using PD in order to determine the presence of AQP1 in peritoneal biopsies, AQP1 release in the PD effluent through exosomes and the correlation of AQP1 abundance with the efficiency of peritoneal ultrafiltration. The experiments using immunofluorescence showed a strong expression of AQP1 in MCs. Immunoblotting analysis on vesicles isolated from PD effluents showed a consistent presence of AQP1, mesothelin and Alix and the absence of the CD31. Thus, this suggests that they have an exclusive mesothelial origin. The immunoTEM analysis showed a homogeneous population of nanovesicles and confirmed the immunoblotting results. Interestingly, the quantitative analysis by ELISA showed a positive correlation between AQP1 in the PD effluent and ultrafiltration (UF), free water transport (FWT) and Na-sieving. This evidence opens the discussion on the functional role of mesothelial AQP1 during PD and suggests that it may represent a potential non-invasive biomarker of peritoneal barrier integrity, with predictive potential of UFF in PD patients.


Sign in / Sign up

Export Citation Format

Share Document