scholarly journals Antifungal antibiotics modulate the pro-inflammatory cytokine production and phagocytic activity of human monocytes in an in vitro sepsis model

Life Sciences ◽  
2015 ◽  
Vol 141 ◽  
pp. 128-136 ◽  
Author(s):  
Stefan Muenster ◽  
Christian Bode ◽  
Britta Diedrich ◽  
Sebastian Jahnert ◽  
Christina Weisheit ◽  
...  
2009 ◽  
Vol 15 (3) ◽  
pp. 168-173 ◽  
Author(s):  
Hiromi Ogino ◽  
Miho Fujii ◽  
Mariko Ono ◽  
Kayoko Maezawa ◽  
Junko Kizu ◽  
...  

2020 ◽  
Vol 140 (7) ◽  
pp. S109
Author(s):  
C. Bax ◽  
Y. Li ◽  
A. Ravishankar ◽  
S. Maddukuri ◽  
J. Patel ◽  
...  

2020 ◽  
Vol 117 (43) ◽  
pp. 26885-26894
Author(s):  
Zahrah Al Rumaih ◽  
Ma. Junaliah Tuazon Kels ◽  
Esther Ng ◽  
Pratikshya Pandey ◽  
Sergio M. Pontejo ◽  
...  

Ectromelia virus (ECTV) causes mousepox, a surrogate mouse model for smallpox caused by variola virus in humans. Both orthopoxviruses encode tumor necrosis factor receptor (TNFR) homologs or viral TNFR (vTNFR). These homologs are termed cytokine response modifier (Crm) proteins, containing a TNF-binding domain and a chemokine-binding domain called smallpox virus-encoded chemokine receptor (SECRET) domain. ECTV encodes one vTNFR known as CrmD. Infection of ECTV-resistant C57BL/6 mice with a CrmD deletion mutant virus resulted in uniform mortality due to excessive TNF secretion and dysregulated inflammatory cytokine production. CrmD dampened pathology, leukocyte recruitment, and inflammatory cytokine production in lungs including TNF, IL-6, IL-10, and IFN-γ. Blockade of TNF, IL-6, or IL-10R function with monoclonal antibodies reduced lung pathology and provided 60 to 100% protection from otherwise lethal infection. IFN-γ caused lung pathology only when both the TNF-binding and SECRET domains were absent. Presence of the SECRET domain alone induced significantly higher levels of IL-1β, IL-6, and IL-10, likely overcoming any protective effects that might have been afforded by anti–IFN-γ treatment. The use of TNF-deficient mice and those that express only membrane-associated but not secreted TNF revealed that CrmD is critically dependent on host TNF for its function. In vitro, recombinant Crm proteins from different orthopoxviruses bound to membrane-associated TNF and dampened inflammatory gene expression through reverse signaling. CrmD does not affect virus replication; however, it provides the host advantage by enabling survival. Host survival would facilitate virus spread, which would also provide an advantage to the virus.


Sign in / Sign up

Export Citation Format

Share Document