scholarly journals Activation of vitamin D receptor attenuates high glucose-induced cellular injury partially dependent on CYP2J5 in murine renal tubule epithelial cell

Life Sciences ◽  
2019 ◽  
Vol 234 ◽  
pp. 116755 ◽  
Author(s):  
Yan Liu ◽  
Liu Li ◽  
Bin Yi ◽  
Zhao-Xin Hu ◽  
Ai-Mei Li ◽  
...  
2017 ◽  
Vol 41 (9) ◽  
pp. 1065-1074 ◽  
Author(s):  
Fernando Hernández-Sánchez ◽  
Silvia Guzmán-Beltrán ◽  
María Teresa Herrera ◽  
Yolanda Gonzalez ◽  
Manuel Salgado ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Li Zheng ◽  
Wei Zhang ◽  
Aimei Li ◽  
Yan Liu ◽  
Bin Yi ◽  
...  

Objective. Inflammation plays a major role in albuminuria in type 2 diabetes mellitus (T2DM). Our previous studies have shown that the expression of vitamin D receptor (VDR) is downregulated in T2DM which is closely associated with the severity of albuminuria. In this study, we investigated the expression of anti-inflammatory cytokine protein tyrosine phosphatase nonreceptor type 2 (PTPN2) in T2DM and explored its relationship to albuminuria and VDR. Methods. 101 T2DM patients were divided into three groups based on urinary albumin-to-creatinine ratio (uACR): normal albuminuria (uACR < 30 mg/g, n=29), microalbuminuria (30 mg/g ≤ uACR < 300 mg/g, n=34), and macroalbuminuria (uACR ≥ 300 mg/g, n=38). Thirty healthy individuals were included as controls. Serum was analyzed for PTPN2 and IL-6 expression, and peripheral blood mononuclear cells (PBMCs) were analyzed for PTPN2 and VDR expression. THP-1 cells were incubated with high glucose and further treated with or without paricalcitol, a vitamin D analog. The levels of PTPN2, VDR, IL-6, TNFα, and MCP-1 were analyzed. In addition, anti-inflammatory activities of PTPN2 were further explored in THP-1 cells stimulated with high glucose after PTPN2 silencing or overexpression. Results. PTPN2 expression was downregulated in T2DM with the lowest level observed in macroalbuminuria patients. PTPN2 level positively correlated with VDR but negatively correlated with uACR and IL-6. When stimulated with high glucose, there was an increase in inflammatory factors and a decrease in PTPN2 expression. Treatment with paricalcitol reversed these effects. However, paricalcitol failed to exert anti-inflammatory effects in the setting of PTPN2 knockdown. Thus, low levels of PTPN2 aggravated glucose-stimulated inflammation, while high levels of PTPN2 reduced it. Conclusion. PTPN2, an anti-inflammatory factor regulated by VDR, was reduced in T2DM CKD stages 1-2. Taken together, our results suggest that therapeutic strategies that enhance PTPN2 may be beneficial for controlling inflammation in T2DM.


2018 ◽  
Author(s):  
Vinod Kumar ◽  
Himanshu Vashistha ◽  
Xiqian Lan ◽  
Nirupama Chandel ◽  
Kamesh Ayasolla ◽  
...  

AbstractHuman Parietal Epithelial cells (PECs) are considered as a source of progenitor cells to sustain podocyte (PD) homeostasis. We hypothesized that the absence of apolipoprotein (APO) L1 favors the PEC phenotype and that induction of APOL1 transitions to PD renewal. During PECs’ transition, APOL1 expression coincided with the expression of PD markers (PEC transition) along with down regulation of miR193a. The induction of APOL1 down regulated miR193a and induced PD markers in PECs/HEKs; whereas, the APOL1-silencing in transited (Tr)-PECs/HepG2s up regulated miR193a expression suggesting a reciprocally linked feedback loop relationship between APOL1 and miR193a. HIV, IFN-y, and vitamin D receptor agonist (VDA) induced APOL1 expression and PEC transition markers but down regulated miR193a in PECs/HEKs. Glomeruli in HIV patients and HIV: APOL1 transgenic mice displayed foci of PECs expressing synaptopodin, a PEC transition marker. Since APOL1 silencing in PECs partially attenuated HIV-, VDA-, and IFN-y-induced PECs transition, this would suggest that APOL1 is an important functional constituent of APOL1-miR193a axis.


Sign in / Sign up

Export Citation Format

Share Document