Hepatocyte Nuclear Factor 4-α (HNF4α) controls the insulin resistance-induced pancreatic β-cell mass expansion

Life Sciences ◽  
2021 ◽  
pp. 120213
Author(s):  
Robson Barth ◽  
Carolina Ruoso ◽  
Sandra Mara Ferreira ◽  
Franciele Caroline de Ramos ◽  
Fernanda Barbosa Lima ◽  
...  
Biomolecules ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1057
Author(s):  
Blandine Gausserès ◽  
Junjun Liu ◽  
Ewout Foppen ◽  
Cécile Tourrel-Cuzin ◽  
Ana Rodriguez Sanchez-Archidona ◽  
...  

Objective: Type 2 diabetes (T2D) occurs by deterioration in pancreatic β-cell function and/or progressive loss of pancreatic β-cell mass under the context of insulin resistance. α7 nicotinic acetylcholine receptor (nAChR) may contribute to insulin sensitivity but its role in the pathogenesis of T2D remains undefined. We investigated whether the systemic lack of α7 nAChR was sufficient to impair glucose homeostasis. Methods: We used an α7 nAChR knock-out (α7−/−) mouse model fed a standard chow diet. The effects of the lack of α7 nAChR on islet mass, insulin secretion, glucose and insulin tolerance, body composition, and food behaviour were assessed in vivo and ex vivo experiments. Results: Young α7−/− mice display a chronic mild high glycemia combined with an impaired glucose tolerance and a marked deficit in β-cell mass. In addition to these metabolic disorders, old mice developed adipose tissue inflammation, elevated plasma free fatty acid concentrations and presented glycolytic muscle insulin resistance in old mice. Finally, α7−/− mice, fed a chow diet, exhibited a late-onset excessive gain in body weight through increased fat mass associated with higher food intake. Conclusion: Our work highlights the important role of α7 nAChR in glucose homeostasis. The constitutive lack of α7 nAChR suggests a novel pathway influencing the pathogenesis of T2D.


2011 ◽  
Vol 58 (2) ◽  
Author(s):  
Riyadh Saif-Ali ◽  
Roslan Harun ◽  
S Al-Jassabi ◽  
Wan Zurinah Wan Ngah

This study aimed to investigate the associations of hepatocyte nuclear factor 4 (HNF4) alpha single nucleotide polymorphisms (SNPs) and haplotype with insulin resistance and metabolic syndrome parameters. Nine SNPs spanning the HNF4 alpha P2 promoter (rs4810424, rs1884613 and rs1884614) and coding region (rs2144908, rs6031551, rs6031552, rs1885088, rs1028583 and rs3818247) were genotyped in 160 subjects without diabetes or metabolic syndrome. The HNF4 alpha P2 promoter SNPs rs4810424, rs1884613 and rs1884614 were associated with insulin resistance (p = 0.017; 0.037; 0.024) and body mass index (BMI) (p = 0.03; 0.035; 0.039). The intron 1D SNP rs2144908 was associated with high-density lipoprotein cholesterol (HDLc) (p = 0.020) and the intron 9 SNP rs3818247 showed association with systolic (p = 0.02) and diastolic (p = 0.034) blood pressure. HNF4 alpha common haplotype CCCGTC associated with higher insulin resistance (p = 0.022), fasting blood glucose (FBG) (p = 0.035) and lower HDLc (p = 0.001). In conclusion, subjects with HNF4 alpha P2 variants and haplotypes have been shown to have a higher insulin resistance and are therefore at a higher risk for developing type 2 diabetes mellitus.


1998 ◽  
Vol 273 (38) ◽  
pp. 24457-24464 ◽  
Author(s):  
Iain D. Dukes ◽  
Seamus Sreenan ◽  
Michael W. Roe ◽  
Matteo Levisetti ◽  
Yun-Ping Zhou ◽  
...  

Cell Cycle ◽  
2014 ◽  
Vol 13 (14) ◽  
pp. 2221-2229 ◽  
Author(s):  
Latif Rachdi ◽  
Dulanjalee Kariyawasam ◽  
Virginie Aïello ◽  
Yann Herault ◽  
Nathalie Janel ◽  
...  

Endocrinology ◽  
2014 ◽  
Vol 155 (2) ◽  
pp. 392-404 ◽  
Author(s):  
Ming-Jen Tsai ◽  
Hsin-Fang Yang-Yen ◽  
Ming-Ko Chiang ◽  
Mei-Jen Wang ◽  
Shiou-Shian Wu ◽  
...  

The perinatal period is critical for β-cell mass establishment, which is characterized by a transient burst in proliferation to increase β-cell mass in response to the need for glucose homeostasis throughout life. In adulthood, the ability of β-cells to grow, proliferate, and expand their mass is also characteristic of pathological states of insulin resistance. Translationally controlled tumor-associated protein (TCTP), an evolutionarily highly conserved protein that is implicated in cell growth and proliferation, has been identified as a novel glucose-regulated survival-supporting protein in pancreatic β-cells. In this study, the enhanced β-cell proliferation detected both during the perinatal developmental period and in insulin-resistant states in high-fat diet-fed mice was found to parallel the expression of TCTP in pancreatic β-cells. Specific knockout of TCTP in β-cells led to increased expression of total and nuclear Forkhead box protein O1 and tumor suppressor protein 53, and decreased expression of p70S6 kinase phosphorylation and cyclin D2 and cyclin-dependent kinase 2. This resulted in decreased β-cell proliferation and growth, reduced β-cell mass, and insulin secretion. Together, these effects led to hyperglycemia. These observations suggest that TCTP is essential for β-cell mass expansion during development and β-cell adaptation in response to insulin resistance.


Endocrinology ◽  
2015 ◽  
Vol 156 (6) ◽  
pp. 2019-2028 ◽  
Author(s):  
Risheng Ye ◽  
Miao Wang ◽  
Qiong A. Wang ◽  
Philipp E. Scherer

Abstract Pathways that stimulate β-cell regeneration remain of great clinical interest, yet effective therapeutic avenues that promote survival or reconstitution of β-cell mass remain elusive. Using a mouse model with inducible β-cell apoptosis followed by adiponectin-mediated regeneration, we aimed to identify key molecules boosting β-cell viability. In the regenerating pancreatic islets, we examined changes within the transcriptome and observed an extensive up-regulation of genes encoding proteins involved in lipid transport and metabolism. The most prominent targets were further confirmed by quantitative PCR and immunofluorescence. Among the upstream regulators predicted by pathway analysis of the transcriptome, we detected enhanced levels of 2 key transcription factors, Hepatocyte Nuclear Factor 4α and Peroxisome Proliferator-Activated Receptorα. Our data suggest that improving pancreatic islet lipid metabolism as an important antilipotoxic phenomenon to boost β-cell regeneration. This is primarily mediated by the adipokine adiponectin that exerts its action on both the beta-cell directly as well as on the adipocyte. Adiponectin induces lipid metabolism gene expression in regenerating islets through Hepatocyte Nuclear Factor 4α and Peroxisome Proliferator-Activated Receptorα. Adiponectin also modulates leptin levels via preserving adipose tissue mass in the insulinopenic state.


Sign in / Sign up

Export Citation Format

Share Document