The relationship between river types and land cover in riparian zones

Limnologica ◽  
2018 ◽  
Vol 71 ◽  
pp. 29-43 ◽  
Author(s):  
Kateřina Kujanová ◽  
Milada Matoušková ◽  
Zdeněk Hošek
2018 ◽  
Vol 28 (2) ◽  
pp. 317-329 ◽  
Author(s):  
Luciano F. A. Montag ◽  
Kirk O. Winemiller ◽  
Friedrich W. Keppeler ◽  
Híngara Leão ◽  
Naraiana L. Benone ◽  
...  

2019 ◽  
Vol 43 (6) ◽  
pp. 731-753 ◽  
Author(s):  
Yiman Fang ◽  
Chunmei Ma ◽  
M Jane Bunting

Reconstructing land cover from pollen data using mathematical models of the relationship between them has the potential to translate the many thousand pollen records produced over the last 100 years (over 2300 radiocarbon-dated pollen records exist for the UK alone) into formats relevant to ecologists, archaeologists and climate scientists. However, the reliability of these reconstructions depends on model parameters. A key parameter is Relative Pollen Productivity (RPP), usually estimated from empirical data using ‘Extended R Value analysis’ (ERV analysis). Lack of RPP estimates for many regions is currently a major limitation on reconstructing global land cover. We present two alternatives to ERV analysis, the Modified Davis Method and an iteration method, which use the same underlying model of the relationship between pollen and vegetation to estimate RPP from empirical data, but with different assumptions. We test them in simulation against ERV analysis, and use a case study of a problematic empirical dataset to determine whether they have the potential to increase the speed and geographic range of RPP estimation. The two alternative methods are shown to perform at least as well as ERV analysis in simulation. We also present new RPP estimates from southeastern sub-tropical China for nine taxa estimated using the Modified Davis Method. Adding these two methods to the ‘toolkit’ for land cover reconstruction from pollen records opens up the possibility to estimate a key parameter from existing datasets with less field time than using current methods. This can both speed up the inclusion of more of the globe in past land cover mapping exercises such as the PAGES Landcover6k working group and improve our understanding of how this parameter varies within a single taxon and the factors control that variation.


2019 ◽  
Vol 11 (3) ◽  
pp. 283 ◽  
Author(s):  
Katherine Hess ◽  
Cheila Cullen ◽  
Jeanette Cobian-Iñiguez ◽  
Jacob Ramthun ◽  
Victor Lenske ◽  
...  

Spruce beetle-induced (Dendroctonus rufipennis (Kirby)) mortality on the Kenai Peninsula has been hypothesized by local ecologists to result in the conversion of forest to grassland and subsequent increased fire danger. This hypothesis stands in contrast to empirical studies in the continental US which suggested that beetle mortality has only a negligible effect on fire danger. In response, we conducted a study using Landsat data and modeling techniques to map land cover change in the Kenai Peninsula and to integrate change maps with other geospatial data to predictively map fire danger for the same region. We collected Landsat imagery to map land cover change at roughly five-year intervals following a severe, mid-1990s beetle infestation to the present. Land cover classification was performed at each time step and used to quantify grassland encroachment patterns over time. The maps of land cover change along with digital elevation models (DEMs), temperature, and historical fire data were used to map and assess wildfire danger across the study area. Results indicate the highest wildfire danger tended to occur in herbaceous and black spruce land cover types, suggesting that the relationship between spruce beetle damage and wildfire danger in costal Alaskan forested ecosystems differs from the relationship between the two in the forests of the coterminous United States. These change detection analyses and fire danger predictions provide the Kenai National Wildlife Refuge (KENWR) ecologists and other forest managers a better understanding of the extent and magnitude of grassland conversion and subsequent change in fire danger following the 1990s spruce beetle outbreak.


Sign in / Sign up

Export Citation Format

Share Document