Recycling of Paleo-oceanic crust: Geochemical evidence from Early Paleozoic mafic igneous rocks in the Tongbai orogen, Central China

Lithos ◽  
2019 ◽  
Vol 328-329 ◽  
pp. 312-327 ◽  
Author(s):  
Fei Zheng ◽  
Li-Qun Dai ◽  
Zi-Fu Zhao ◽  
Yong-Fei Zheng ◽  
Zheng Xu
2017 ◽  
Vol 141 ◽  
pp. 74-96 ◽  
Author(s):  
Yu Shi ◽  
Xiaoli Pei ◽  
Paterno R. Castillo ◽  
Xijun Liu ◽  
Haihong Ding ◽  
...  

2021 ◽  
Vol 62 (4) ◽  
pp. 389-400
Author(s):  
V.A. Makrygina

Abstract —Analysis of geochemical, geochronological, and new geophysical data on metasedimentary and igneous rocks of the Ol’khon region has made it possible to substantiate: (1) the absence of products of the Caledonian suprasubduction magmatism from the adjacent part of the Siberian craton and (2) the presence of a product of this magmatism in the Anga–Talanchan island arc, namely, the Krestovsky massif with gabbro-diorite to granite phases. This suggests subduction of the Paleoasian oceanic crust under the island arc before the collision. The geophysical data showed a steep sinking of the Siberian craton margin. This sinking and the supposed contrary movement and rotation of the Siberian craton prevented the appearance of a subduction zone beneath the craton during the collision but caused the wide development of fault plates in the fold belt at the late collision stage. The residue of oceanic crust slab was pressed out along the fault planes near the surface and formed a row of gabbro-pyroxenite massifs of the Birkhin Complex in the fold belt, where syncollisional granitic melts (Sharanur Complex) formed at the same time. The interaction of two contrasting melts gave rise to the Tazheran and Budun alkaline syenite massifs and alkaline metasomatites of the Birkhin and Ulanganta gabbroid massifs.


1980 ◽  
Vol 117 (6) ◽  
pp. 547-563 ◽  
Author(s):  
R. E. Swarbrick ◽  
A. H. F. Robertson

SummaryRecent resurgence of interest in the Mesozoic rocks of SW and southern Cyprus necessitates redefinition of the Mesozoic sedimentary and igneous rocks in line with modern stratigraphical convention. Two fundamentally different rocks associations are present, the Troodos Complex, not redefined, a portion of late Cretaceous oceanic crust, and the Mamonia Complex, the tectonically dismembered remnants of a Mesozoic continental margin. Based on earlier work, the Mamonia Complex is divided into two groups, each subdivided into a number of subsidiary formations and members. The Ayios Photios Group is wholly sedimentary, and records the evolution of a late Triassic to Cretaceous inactive continental margin. The Dhiarizos Group represents Triassic alkalic volcanism and sedimentation adjacent to a continental margin. Several other formations not included in the two groups comprise sedimentary mélange and metamorphic rocks. The Troodos Complex possesses an in situ late Cretaceous sedimentary cover which includes two formations of ferromanganiferous pelagic sediments, radiolarites and volcaniclastic sandstones. The overlying Cainozoic calcareous units are not redefined here.


2019 ◽  
Vol 55 (6) ◽  
pp. 4733-4747
Author(s):  
Sainan Wu ◽  
Jiang‐Feng Qin ◽  
Shao‐Cong Lai ◽  
Xiao‐Ping Long ◽  
Yin‐Juan Ju ◽  
...  

2017 ◽  
Vol 62 (15) ◽  
pp. 1035-1038 ◽  
Author(s):  
Shuguang Song ◽  
Liming Yang ◽  
Yuqi Zhang ◽  
Yaoling Niu ◽  
Chao Wang ◽  
...  

1973 ◽  
Vol 10 (9) ◽  
pp. 1363-1379 ◽  
Author(s):  
D. F. Strong ◽  
J. G. Payne

In the Moretons Harbour area, at the eastern end of the Lushs Bight terrane of central Newfoundland, the volcanic rocks of the "Lushs Bight Supergroup" are divided into two new groups, viz, the Moretons Harbour Group and the Chanceport Group. The former is separable into four formations, consisting primarily of variable proportions of basaltic pillow lavas and volcanoclastic sediments, with a composite thickness in excess of 6 km, or around 8 km including an extensive area of 'sheeted' diabase dikes. These formations are steeply dipping and face southwest; they are separated by the Chanceport fault from the Chanceport Group to the south. The latter consists of interbedded basaltic pillow lavas with graywackes and banded red and green cherts, all facing north and steeply dipping to overturned, with a composite thickness of approximately 3 km.The Moretons Harbour Group has been intruded by the Twillingate trondhjemitic granite–granodiorite pluton and abundant basic dikes intrude the granite, indicating that the mafic and felsic magmatism were coeval. Both have undergone intense deformation and the volcanics show a change from greenschist to amphibolite facies mineralogy within a distance of 2 km on approaching the pluton, a result of buttressing by the pluton during deformation, and not an intrusive effect.Base metal sulfides are common throughout the area, but the main occurrences of Cu, As, Sb, and Au are concentrated in the Little Harbour Formation, a 2600 m thick sequence of volcanoclastic rocks within the Moretons Harbour Group.The great thickness of volcanic rocks is interpreted as having formed in an island arc environment, although it is possible that the lowermost parts of the sequence represent oceanic crust. It is unlikely that the sheeted diabases of the Moretons Harbour area were produced by sea-floor spreading.


Sign in / Sign up

Export Citation Format

Share Document