scholarly journals New evidence for the prograde and retrograde PT-path of high-pressure granulites, Moldanubian Zone, Lower Austria, by Zr-in-rutile thermometry and garnet diffusion modelling

Lithos ◽  
2019 ◽  
Vol 342-343 ◽  
pp. 420-439 ◽  
Author(s):  
Philip Schantl ◽  
Christoph Hauzenberger ◽  
Friedrich Finger ◽  
Thomas Müller ◽  
Manfred Linner
2020 ◽  
Author(s):  
Christoph Hauzenberger ◽  
Philip Schantl ◽  
Elena Sizova ◽  
Harald Fritz ◽  
Fritz Finger ◽  
...  

<p><span><span>The granulite occurrences from the Moldanubian zone were extensively studied in the last three decades and their metamorphic overprint at high pressures and at UHT conditions are well constrained. However, there are still some discrepancies regarding the prograde PT-path evolution, the genesis of the granulites and the tectonic processes required to produce the proposed PT-paths. Here we present a comprehensive petrological study where we have investigated more than 300 granulite samples from one of the largest occurrences, the Poechlarn-Wieselburg area - Dunkelsteinerwald. C</span><span>onventional geothermobarometry, garnet zoning pattern, thermodynamic modelling and Zr-in-rutile thermometry on rutile grains enclosed in garnets in felsic and mafic granulites allowed to constrain the prograde as well as the retrograde segments of the PT path. Polycrystalline melt inclusions and high-Ti biotite relics as well as a uniform temperature of approximately 800°C obtained from rutile inclusions (Zr-in-rutile thermometry) in garnet cores disagree with a continuous prograde garnet growth but favour a metastable overstepping of the garnet-in reaction and growth by the peritectic biotite breakdown reaction to garnet and melt within a very narrow PT interval. Subsequent heating to T>1000°C initiated a second stage of garnet growth with a very distinct chemical composition. The preservation of the zoning pattern at these metamorphic conditions clearly document a very short lived process. Diffusion models predict a time span of <5 Ma and cooling rates of 50-60°C/my.</span><span> Zircon U-Pb ages usually cluster around 340 Ma representing the metamorphic peak. However, in mafic granulites zircon ages from approximately 410 Ma to 340 Ma are obtained indicating either an older formation age for the precursor rock of the mafic granulites or just documenting the occurrence of xenocrysts. We applied a series of coupled petrological–thermomechanical tectono-magmatic numerical model to reproduce our deduced PTt-path that evolved from exhumation of subducted lower crust followed by intense heating at the crust-mantle boundary.</span></span></p>


2021 ◽  
Author(s):  
Kathrin Fassmer ◽  
Peter Tropper ◽  
Hannah Pomella ◽  
Thomas Angerer ◽  
Gerald Degenhart ◽  
...  

<p>In collisional orogens continental crust is subducted to (ultra-)high-pressure (HP/UHP) conditions as constrained by petrologic, tectonic and geophysical observations. Despite a wealth of studies on the subduction and exhumation of UHP rocks, the duration of prograde metamorphism during subduction is still not well constrained.</p><p>We plan to apply Lu-Hf and Sm-Nd geochronology on metamorphic rock samples to date the duration of garnet growth, which represents a major part of prograde metamorphism from the greenschist-facies onward. Micaschist samples from the Schneeberg and Radenthein Units in the Eoalpine high-pressure belt (Eastern Alps) will be used for dating as they contain cm- to dm-sized garnet blasts, which experienced only one subduction-exhumation cycle. With dating different parts of big garnet grains, we test whether (1) it is possible to resolve the duration of garnet growth within single crystals, and (2) Lu-Hf and Sm-Nd systems date the same events in the PT-path or yield complementary information. Additionally, we will perform U-Pb geochronology on titanite in order to obtain the age of the first stages of exhumation; in addition, dating of rutile inclusions as well as matrix rutiles will be used to test Eoalpine prograde age. We will also apply U-Th-Pb monazite dating (EPMA and LA-ICPMS) to some of the samples. Collectively, these data will allow us to compare the duration of subduction and the timing of initial exhumation in a single sample. We then will constrain the PT-path of the dated samples by pseudosection modeling combined with Zr-in-rutile, quartz-in-garnet, and carbonaceous material geothermo(baro)metry. We already have preliminary results for Zr-in-rutile thermometry of rutile inclusions in garnets and matrix rutiles for samples from both locations. We measured Zr content with an EPMA and used the calibrations of Tomkins et al. (2007) and Kohn (2020). The calibration of Kohn (2020) gives overall slightly lower temperatures, but all obtained temperatures lay in a range of c. 500-600 °C in accordance with previously published data. In addition, EPMA, µ-XRF, LA-ICPMS, and µCT will be used to control if garnets preserved major and trace elemental growth zoning and to provide spatial 3D information on inclusion patterns. µCT analyses were already successfully used to obtain the chemical centre of the garnet grains in order to be able to cut them directly through there center. This is important for all in-situ chemical analyses. With dating different parts of single garnet crystals separately with Lu-Hf and Sm-Nd geochronology, we will add tight time constraints to the PT-path and constrain the duration of garnet growth.</p><p>With this contribution we formulate the working hypothesis that prograde subduction together with exhumation is a fast process. The basis for testing the idea of fast prograde metamorphism is that many geochronological studies propose a prograde duration of < 10 Ma and studies using geospeedometry sometimes propose an even shorter duration, which is the impetus for this investigation.</p><p>References:</p><p>Kohn, M.J. (2020). A refined zirconium-in-rutile thermometer. American Mineralogist(105), 963-971.</p><p>Tomkins, H.S., Powell, R. & Ellis, D.J. (2007). The pressure dependence of the zirconium-in-rutile thermometer. Journal of Metamorphic Geology(25), 703-713.</p>


1997 ◽  
Vol 04 (06) ◽  
pp. 1315-1319 ◽  
Author(s):  
L. ORTEGA ◽  
L. HUANG ◽  
J. CHEVRIER ◽  
P. ZEPPENFELD ◽  
J. M. GAY ◽  
...  

Au(111) surfaces exposed to oxygen under high pressure (p O2 =1 bar) and at high temperature (T≈800°C) during an extended period of time (several hours) exhibit a ([Formula: see text]R30° structure and, at larger scales (a few nanometers), a long range hexagonal height modulation with a period of 72 Å. This is evidenced by X-ray diffraction at grazing incidence performed at the ESRF. These results confirm and complete previous surface analysis in direct space by scanning tunneling microscopy (STM). This new evidence for a long range superstructure by X-ray diffraction provides new insights into the origin of the moiré patterns observed in the STM study.


Sign in / Sign up

Export Citation Format

Share Document